Benno Lossin dbd5058ba6 rust: make pin-init its own crate
Rename relative paths inside of the crate to still refer to the same
items, also rename paths inside of the kernel crate and adjust the build
system to build the crate.

[ Remove the `expect` (and thus the `lint_reasons` feature) since
  the tree now uses `quote!` from `rust/macros/export.rs`. Remove the
  `TokenStream` import removal, since it is now used as well.

  In addition, temporarily (i.e. just for this commit) use an `--extern
  force:alloc` to prevent an unknown `new_uninit` error in the `rustdoc`
  target. For context, please see a similar case in:

      https://lore.kernel.org/lkml/20240422090644.525520-1-ojeda@kernel.org/

  And adjusted the message above. - Miguel ]

Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Fiona Behrens <me@kloenk.dev>
Tested-by: Andreas Hindborg <a.hindborg@kernel.org>
Link: https://lore.kernel.org/r/20250308110339.2997091-16-benno.lossin@proton.me
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2025-03-16 21:59:19 +01:00

975 lines
36 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2024 Google LLC.
//! A linked list implementation.
use crate::sync::ArcBorrow;
use crate::types::Opaque;
use core::iter::{DoubleEndedIterator, FusedIterator};
use core::marker::PhantomData;
use core::ptr;
use pin_init::PinInit;
mod impl_list_item_mod;
pub use self::impl_list_item_mod::{
impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
};
mod arc;
pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
mod arc_field;
pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
/// A linked list.
///
/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
/// prev/next pointers are not used for several linked lists.
///
/// # Invariants
///
/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
/// field of the first element in the list.
/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
/// exclusive access to the `ListLinks` field.
pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
first: *mut ListLinksFields,
_ty: PhantomData<ListArc<T, ID>>,
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Send for List<T, ID>
where
ListArc<T, ID>: Send,
T: ?Sized + ListItem<ID>,
{
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Sync for List<T, ID>
where
ListArc<T, ID>: Sync,
T: ?Sized + ListItem<ID>,
{
}
/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
///
/// # Safety
///
/// Implementers must ensure that they provide the guarantees documented on methods provided by
/// this trait.
///
/// [`ListArc<Self>`]: ListArc
pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
/// Views the [`ListLinks`] for this value.
///
/// # Guarantees
///
/// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
/// since the most recent such call, then this returns the same pointer as the one returned by
/// the most recent call to `prepare_to_insert`.
///
/// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
///
/// # Safety
///
/// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
/// View the full value given its [`ListLinks`] field.
///
/// Can only be used when the value is in a list.
///
/// # Guarantees
///
/// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
/// * The returned pointer is valid until the next call to `post_remove`.
///
/// # Safety
///
/// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
/// from a call to `view_links` that happened after the most recent call to
/// `prepare_to_insert`.
/// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
/// been called.
unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
/// This is called when an item is inserted into a [`List`].
///
/// # Guarantees
///
/// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
/// called.
///
/// # Safety
///
/// * The provided pointer must point at a valid value in an [`Arc`].
/// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
/// * The caller must own the [`ListArc`] for this value.
/// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
/// called after this call to `prepare_to_insert`.
///
/// [`Arc`]: crate::sync::Arc
unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
/// This undoes a previous call to `prepare_to_insert`.
///
/// # Guarantees
///
/// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
///
/// # Safety
///
/// The provided pointer must be the pointer returned by the most recent call to
/// `prepare_to_insert`.
unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
}
#[repr(C)]
#[derive(Copy, Clone)]
struct ListLinksFields {
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
}
/// The prev/next pointers for an item in a linked list.
///
/// # Invariants
///
/// The fields are null if and only if this item is not in a list.
#[repr(transparent)]
pub struct ListLinks<const ID: u64 = 0> {
// This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
// list.
inner: Opaque<ListLinksFields>,
}
// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
// move this an instance of this type to a different thread if the pointees are `!Send`.
unsafe impl<const ID: u64> Send for ListLinks<ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
// okay to have immutable access to a ListLinks from several threads at once.
unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
impl<const ID: u64> ListLinks<ID> {
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
}
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
// SAFETY: The caller promises that the pointer is valid.
unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
me.cast()
}
}
/// Similar to [`ListLinks`], but also contains a pointer to the full value.
///
/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
#[repr(C)]
pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
/// The `ListLinks` field inside this value.
///
/// This is public so that it can be used with `impl_has_list_links!`.
pub inner: ListLinks<ID>,
// UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
// `ptr::null()` doesn't work for `T: ?Sized`.
self_ptr: Opaque<*const T>,
}
// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
// it's okay to have immutable access to a ListLinks from several threads at once.
//
// Note that `inner` being a public field does not prevent this type from being opaque, since
// `inner` is a opaque type.
unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
/// The offset from the [`ListLinks`] to the self pointer field.
pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
Self {
inner: ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
},
self_ptr: Opaque::uninit(),
}
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
/// Creates a new empty list.
pub const fn new() -> Self {
Self {
first: ptr::null_mut(),
_ty: PhantomData,
}
}
/// Returns whether this list is empty.
pub fn is_empty(&self) -> bool {
self.first.is_null()
}
/// Inserts `item` before `next` in the cycle.
///
/// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
/// is empty.
///
/// # Safety
///
/// * `next` must be an element in this list or null.
/// * if `next` is null, then the list must be empty.
unsafe fn insert_inner(
&mut self,
item: ListArc<T, ID>,
next: *mut ListLinksFields,
) -> *mut ListLinksFields {
let raw_item = ListArc::into_raw(item);
// SAFETY:
// * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
// * Since we have ownership of the `ListArc`, `post_remove` must have been called after
// the most recent call to `prepare_to_insert`, if any.
// * We own the `ListArc`.
// * Removing items from this list is always done using `remove_internal_inner`, which
// calls `post_remove` before giving up ownership.
let list_links = unsafe { T::prepare_to_insert(raw_item) };
// SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
let item = unsafe { ListLinks::fields(list_links) };
// Check if the list is empty.
if next.is_null() {
// SAFETY: The caller just gave us ownership of these fields.
// INVARIANT: A linked list with one item should be cyclic.
unsafe {
(*item).next = item;
(*item).prev = item;
}
self.first = item;
} else {
// SAFETY: By the type invariant, this pointer is valid or null. We just checked that
// it's not null, so it must be valid.
let prev = unsafe { (*next).prev };
// SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
// ownership of the fields on `item`.
// INVARIANT: This correctly inserts `item` between `prev` and `next`.
unsafe {
(*item).next = next;
(*item).prev = prev;
(*prev).next = item;
(*next).prev = item;
}
}
item
}
/// Add the provided item to the back of the list.
pub fn push_back(&mut self, item: ListArc<T, ID>) {
// SAFETY:
// * `self.first` is null or in the list.
// * `self.first` is only null if the list is empty.
unsafe { self.insert_inner(item, self.first) };
}
/// Add the provided item to the front of the list.
pub fn push_front(&mut self, item: ListArc<T, ID>) {
// SAFETY:
// * `self.first` is null or in the list.
// * `self.first` is only null if the list is empty.
let new_elem = unsafe { self.insert_inner(item, self.first) };
// INVARIANT: `new_elem` is in the list because we just inserted it.
self.first = new_elem;
}
/// Removes the last item from this list.
pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
if self.first.is_null() {
return None;
}
// SAFETY: We just checked that the list is not empty.
let last = unsafe { (*self.first).prev };
// SAFETY: The last item of this list is in this list.
Some(unsafe { self.remove_internal(last) })
}
/// Removes the first item from this list.
pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
if self.first.is_null() {
return None;
}
// SAFETY: The first item of this list is in this list.
Some(unsafe { self.remove_internal(self.first) })
}
/// Removes the provided item from this list and returns it.
///
/// This returns `None` if the item is not in the list. (Note that by the safety requirements,
/// this means that the item is not in any list.)
///
/// # Safety
///
/// `item` must not be in a different linked list (with the same id).
pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
// SAFETY: TODO.
let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
// SAFETY: The user provided a reference, and reference are never dangling.
//
// As for why this is not a data race, there are two cases:
//
// * If `item` is not in any list, then these fields are read-only and null.
// * If `item` is in this list, then we have exclusive access to these fields since we
// have a mutable reference to the list.
//
// In either case, there's no race.
let ListLinksFields { next, prev } = unsafe { *item };
debug_assert_eq!(next.is_null(), prev.is_null());
if !next.is_null() {
// This is really a no-op, but this ensures that `item` is a raw pointer that was
// obtained without going through a pointer->reference->pointer conversion roundtrip.
// This ensures that the list is valid under the more restrictive strict provenance
// ruleset.
//
// SAFETY: We just checked that `next` is not null, and it's not dangling by the
// list invariants.
unsafe {
debug_assert_eq!(item, (*next).prev);
item = (*next).prev;
}
// SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
// is in this list. The pointers are in the right order.
Some(unsafe { self.remove_internal_inner(item, next, prev) })
} else {
None
}
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// `item` must point at an item in this list.
unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
// SAFETY: The caller promises that this pointer is not dangling, and there's no data race
// since we have a mutable reference to the list containing `item`.
let ListLinksFields { next, prev } = unsafe { *item };
// SAFETY: The pointers are ok and in the right order.
unsafe { self.remove_internal_inner(item, next, prev) }
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
/// next` and `(*item).prev == prev`.
unsafe fn remove_internal_inner(
&mut self,
item: *mut ListLinksFields,
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
) -> ListArc<T, ID> {
// SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
// pointers are always valid for items in a list.
//
// INVARIANT: There are three cases:
// * If the list has at least three items, then after removing the item, `prev` and `next`
// will be next to each other.
// * If the list has two items, then the remaining item will point at itself.
// * If the list has one item, then `next == prev == item`, so these writes have no
// effect. The list remains unchanged and `item` is still in the list for now.
unsafe {
(*next).prev = prev;
(*prev).next = next;
}
// SAFETY: We have exclusive access to items in the list.
// INVARIANT: `item` is being removed, so the pointers should be null.
unsafe {
(*item).prev = ptr::null_mut();
(*item).next = ptr::null_mut();
}
// INVARIANT: There are three cases:
// * If `item` was not the first item, then `self.first` should remain unchanged.
// * If `item` was the first item and there is another item, then we just updated
// `prev->next` to `next`, which is the new first item, and setting `item->next` to null
// did not modify `prev->next`.
// * If `item` was the only item in the list, then `prev == item`, and we just set
// `item->next` to null, so this correctly sets `first` to null now that the list is
// empty.
if self.first == item {
// SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
// list, so it must be valid. There is no race since `prev` is still in the list and we
// still have exclusive access to the list.
self.first = unsafe { (*prev).next };
}
// SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
// of `List`.
let list_links = unsafe { ListLinks::from_fields(item) };
// SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
let raw_item = unsafe { T::post_remove(list_links) };
// SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
unsafe { ListArc::from_raw(raw_item) }
}
/// Moves all items from `other` into `self`.
///
/// The items of `other` are added to the back of `self`, so the last item of `other` becomes
/// the last item of `self`.
pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
// First, we insert the elements into `self`. At the end, we make `other` empty.
if self.is_empty() {
// INVARIANT: All of the elements in `other` become elements of `self`.
self.first = other.first;
} else if !other.is_empty() {
let other_first = other.first;
// SAFETY: The other list is not empty, so this pointer is valid.
let other_last = unsafe { (*other_first).prev };
let self_first = self.first;
// SAFETY: The self list is not empty, so this pointer is valid.
let self_last = unsafe { (*self_first).prev };
// SAFETY: We have exclusive access to both lists, so we can update the pointers.
// INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
// update `self.first` because the first element of `self` does not change.
unsafe {
(*self_first).prev = other_last;
(*other_last).next = self_first;
(*self_last).next = other_first;
(*other_first).prev = self_last;
}
}
// INVARIANT: The other list is now empty, so update its pointer.
other.first = ptr::null_mut();
}
/// Returns a cursor that points before the first element of the list.
pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
// INVARIANT: `self.first` is in this list.
Cursor {
next: self.first,
list: self,
}
}
/// Returns a cursor that points after the last element in the list.
pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
// INVARIANT: `next` is allowed to be null.
Cursor {
next: core::ptr::null_mut(),
list: self,
}
}
/// Creates an iterator over the list.
pub fn iter(&self) -> Iter<'_, T, ID> {
// INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
// at the first element of the same list.
Iter {
current: self.first,
stop: self.first,
_ty: PhantomData,
}
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
fn default() -> Self {
List::new()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
fn drop(&mut self) {
while let Some(item) = self.pop_front() {
drop(item);
}
}
}
/// An iterator over a [`List`].
///
/// # Invariants
///
/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
/// * The `current` pointer is null or points at a value in that [`List`].
/// * The `stop` pointer is equal to the `first` field of that [`List`].
#[derive(Clone)]
pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
current: *mut ListLinksFields,
stop: *mut ListLinksFields,
_ty: PhantomData<&'a ListArc<T, ID>>,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
type Item = ArcBorrow<'a, T>;
fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
if self.current.is_null() {
return None;
}
let current = self.current;
// SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
// dangling. There's no race because the iterator holds an immutable borrow to the list.
let next = unsafe { (*current).next };
// INVARIANT: If `current` was the last element of the list, then this updates it to null.
// Otherwise, we update it to the next element.
self.current = if next != self.stop {
next
} else {
ptr::null_mut()
};
// SAFETY: The `current` pointer points at a value in the list.
let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the list. However, the `ArcBorrow` is annotated with the iterator's
// lifetime, and the list is immutably borrowed for that lifetime.
// * Values in a list never have a `UniqueArc` reference.
Some(unsafe { ArcBorrow::from_raw(item) })
}
}
/// A cursor into a [`List`].
///
/// A cursor always rests between two elements in the list. This means that a cursor has a previous
/// and next element, but no current element. It also means that it's possible to have a cursor
/// into an empty list.
///
/// # Examples
///
/// ```
/// use kernel::prelude::*;
/// use kernel::list::{List, ListArc, ListLinks};
///
/// #[pin_data]
/// struct ListItem {
/// value: u32,
/// #[pin]
/// links: ListLinks,
/// }
///
/// impl ListItem {
/// fn new(value: u32) -> Result<ListArc<Self>> {
/// ListArc::pin_init(try_pin_init!(Self {
/// value,
/// links <- ListLinks::new(),
/// }), GFP_KERNEL)
/// }
/// }
///
/// kernel::list::impl_has_list_links! {
/// impl HasListLinks<0> for ListItem { self.links }
/// }
/// kernel::list::impl_list_arc_safe! {
/// impl ListArcSafe<0> for ListItem { untracked; }
/// }
/// kernel::list::impl_list_item! {
/// impl ListItem<0> for ListItem { using ListLinks; }
/// }
///
/// // Use a cursor to remove the first element with the given value.
/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
/// let mut cursor = list.cursor_front();
/// while let Some(next) = cursor.peek_next() {
/// if next.value == value {
/// return Some(next.remove());
/// }
/// cursor.move_next();
/// }
/// None
/// }
///
/// // Use a cursor to remove the last element with the given value.
/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
/// let mut cursor = list.cursor_back();
/// while let Some(prev) = cursor.peek_prev() {
/// if prev.value == value {
/// return Some(prev.remove());
/// }
/// cursor.move_prev();
/// }
/// None
/// }
///
/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
/// // a new list.
/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
/// let mut out = List::new();
/// let mut cursor = list.cursor_front();
/// while let Some(next) = cursor.peek_next() {
/// if next.value == value {
/// out.push_back(next.remove());
/// } else {
/// cursor.move_next();
/// }
/// }
/// out
/// }
///
/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
/// // bounds.
/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
/// let mut cursor = list.cursor_front();
/// for _ in 0..idx {
/// if !cursor.move_next() {
/// return Err(EINVAL);
/// }
/// }
/// cursor.insert_next(new);
/// Ok(())
/// }
///
/// // Merge two sorted lists into a single sorted list.
/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
/// let mut cursor = list.cursor_front();
/// for to_insert in merge {
/// while let Some(next) = cursor.peek_next() {
/// if to_insert.value < next.value {
/// break;
/// }
/// cursor.move_next();
/// }
/// cursor.insert_prev(to_insert);
/// }
/// }
///
/// let mut list = List::new();
/// list.push_back(ListItem::new(14)?);
/// list.push_back(ListItem::new(12)?);
/// list.push_back(ListItem::new(10)?);
/// list.push_back(ListItem::new(12)?);
/// list.push_back(ListItem::new(15)?);
/// list.push_back(ListItem::new(14)?);
/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
/// // [14, 10, 15, 14]
/// assert!(remove_first(&mut list, 14).is_some());
/// // [10, 15, 14]
/// insert_at(&mut list, ListItem::new(12)?, 2)?;
/// // [10, 15, 12, 14]
/// assert!(remove_last(&mut list, 15).is_some());
/// // [10, 12, 14]
///
/// let mut list2 = List::new();
/// list2.push_back(ListItem::new(11)?);
/// list2.push_back(ListItem::new(13)?);
/// merge_sorted(&mut list, list2);
///
/// let mut items = list.into_iter();
/// assert_eq!(items.next().unwrap().value, 10);
/// assert_eq!(items.next().unwrap().value, 11);
/// assert_eq!(items.next().unwrap().value, 12);
/// assert_eq!(items.next().unwrap().value, 13);
/// assert_eq!(items.next().unwrap().value, 14);
/// assert!(items.next().is_none());
/// # Result::<(), Error>::Ok(())
/// ```
///
/// # Invariants
///
/// The `next` pointer is null or points a value in `list`.
pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
list: &'a mut List<T, ID>,
/// Points at the element after this cursor, or null if the cursor is after the last element.
next: *mut ListLinksFields,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
/// Returns a pointer to the element before the cursor.
///
/// Returns null if there is no element before the cursor.
fn prev_ptr(&self) -> *mut ListLinksFields {
let mut next = self.next;
let first = self.list.first;
if next == first {
// We are before the first element.
return core::ptr::null_mut();
}
if next.is_null() {
// We are after the last element, so we need a pointer to the last element, which is
// the same as `(*first).prev`.
next = first;
}
// SAFETY: `next` can't be null, because then `first` must also be null, but in that case
// we would have exited at the `next == first` check. Thus, `next` is an element in the
// list, so we can access its `prev` pointer.
unsafe { (*next).prev }
}
/// Access the element after this cursor.
pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
if self.next.is_null() {
return None;
}
// INVARIANT:
// * We just checked that `self.next` is non-null, so it must be in `self.list`.
// * `ptr` is equal to `self.next`.
Some(CursorPeek {
ptr: self.next,
cursor: self,
})
}
/// Access the element before this cursor.
pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
let prev = self.prev_ptr();
if prev.is_null() {
return None;
}
// INVARIANT:
// * We just checked that `prev` is non-null, so it must be in `self.list`.
// * `self.prev_ptr()` never returns `self.next`.
Some(CursorPeek {
ptr: prev,
cursor: self,
})
}
/// Move the cursor one element forward.
///
/// If the cursor is after the last element, then this call does nothing. This call returns
/// `true` if the cursor's position was changed.
pub fn move_next(&mut self) -> bool {
if self.next.is_null() {
return false;
}
// SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
// access the `next` field.
let mut next = unsafe { (*self.next).next };
if next == self.list.first {
next = core::ptr::null_mut();
}
// INVARIANT: `next` is either null or the next element after an element in the list.
self.next = next;
true
}
/// Move the cursor one element backwards.
///
/// If the cursor is before the first element, then this call does nothing. This call returns
/// `true` if the cursor's position was changed.
pub fn move_prev(&mut self) -> bool {
if self.next == self.list.first {
return false;
}
// INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
self.next = self.prev_ptr();
true
}
/// Inserts an element where the cursor is pointing and get a pointer to the new element.
fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
let ptr = if self.next.is_null() {
self.list.first
} else {
self.next
};
// SAFETY:
// * `ptr` is an element in the list or null.
// * if `ptr` is null, then `self.list.first` is null so the list is empty.
let item = unsafe { self.list.insert_inner(item, ptr) };
if self.next == self.list.first {
// INVARIANT: We just inserted `item`, so it's a member of list.
self.list.first = item;
}
item
}
/// Insert an element at this cursor's location.
pub fn insert(mut self, item: ListArc<T, ID>) {
// This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
// reduces confusion when the last operation on the cursor is an insertion; in that case,
// you just want to insert the element at the cursor, and it is confusing that the call
// involves the word prev or next.
self.insert_inner(item);
}
/// Inserts an element after this cursor.
///
/// After insertion, the new element will be after the cursor.
pub fn insert_next(&mut self, item: ListArc<T, ID>) {
self.next = self.insert_inner(item);
}
/// Inserts an element before this cursor.
///
/// After insertion, the new element will be before the cursor.
pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
self.insert_inner(item);
}
/// Remove the next element from the list.
pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
self.peek_next().map(|v| v.remove())
}
/// Remove the previous element from the list.
pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
self.peek_prev().map(|v| v.remove())
}
}
/// References the element in the list next to the cursor.
///
/// # Invariants
///
/// * `ptr` is an element in `self.cursor.list`.
/// * `ISNEXT == (self.ptr == self.cursor.next)`.
pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
cursor: &'a mut Cursor<'b, T, ID>,
ptr: *mut ListLinksFields,
}
impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
CursorPeek<'a, 'b, T, ISNEXT, ID>
{
/// Remove the element from the list.
pub fn remove(self) -> ListArc<T, ID> {
if ISNEXT {
self.cursor.move_next();
}
// INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
// call.
// SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
// `self.cursor.list` by the type invariants of `Cursor`.
unsafe { self.cursor.list.remove_internal(self.ptr) }
}
/// Access this value as an [`ArcBorrow`].
pub fn arc(&self) -> ArcBorrow<'_, T> {
// SAFETY: `self.ptr` points at an element in `self.cursor.list`.
let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
// an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
// `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
// access requires first releasing the immutable borrow on the `CursorPeek`.
// * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
// reference, and `UniqueArc` references must be unique.
unsafe { ArcBorrow::from_raw(me) }
}
}
impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
for CursorPeek<'a, 'b, T, ISNEXT, ID>
{
// If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
// get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
// However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
// and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
// unsound.
type Target = T;
fn deref(&self) -> &T {
// SAFETY: `self.ptr` points at an element in `self.cursor.list`.
let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
// SAFETY: The value cannot be removed from the list for the duration of the lifetime
// annotated on the returned `&T`, because removing it from the list would require mutable
// access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
// immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
// `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
// requires first releasing the immutable borrow on the `CursorPeek`.
unsafe { &*me }
}
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
type IntoIter = Iter<'a, T, ID>;
type Item = ArcBorrow<'a, T>;
fn into_iter(self) -> Iter<'a, T, ID> {
self.iter()
}
}
/// An owning iterator into a [`List`].
pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
list: List<T, ID>,
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
type Item = ListArc<T, ID>;
fn next(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_front()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
fn next_back(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_back()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
type IntoIter = IntoIter<T, ID>;
type Item = ListArc<T, ID>;
fn into_iter(self) -> IntoIter<T, ID> {
IntoIter { list: self }
}
}