442 Commits

Author SHA1 Message Date
Linus Torvalds
6f110a5e4f Disable SLUB_TINY for build testing
... and don't error out so hard on missing module descriptions.

Before commit 6c6c1fc09de3 ("modpost: require a MODULE_DESCRIPTION()")
we used to warn about missing module descriptions, but only when
building with extra warnigns (ie 'W=1').

After that commit the warning became an unconditional hard error.

And it turns out not all modules have been converted despite the claims
to the contrary.  As reported by Damian Tometzki, the slub KUnit test
didn't have a module description, and apparently nobody ever really
noticed.

The reason nobody noticed seems to be that the slub KUnit tests get
disabled by SLUB_TINY, which also ends up disabling a lot of other code,
both in tests and in slub itself.  And so anybody doing full build tests
didn't actually see this failre.

So let's disable SLUB_TINY for build-only tests, since it clearly ends
up limiting build coverage.  Also turn the missing module descriptions
error back into a warning, but let's keep it around for non-'W=1'
builds.

Reported-by: Damian Tometzki <damian@riscv-rocks.de>
Link: https://lore.kernel.org/all/01070196099fd059-e8463438-7b1b-4ec8-816d-173874be9966-000000@eu-central-1.amazonses.com/
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Jeff Johnson <jeff.johnson@oss.qualcomm.com>
Fixes: 6c6c1fc09de3 ("modpost: require a MODULE_DESCRIPTION()")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-06 10:00:04 -07:00
Linus Torvalds
eb0ece1602 - The 6 patch series "Enable strict percpu address space checks" from
Uros Bizjak uses x86 named address space qualifiers to provide
   compile-time checking of percpu area accesses.
 
   This has caused a small amount of fallout - two or three issues were
   reported.  In all cases the calling code was founf to be incorrect.
 
 - The 4 patch series "Some cleanup for memcg" from Chen Ridong
   implements some relatively monir cleanups for the memcontrol code.
 
 - The 17 patch series "mm: fixes for device-exclusive entries (hmm)"
   from David Hildenbrand fixes a boatload of issues which David found then
   using device-exclusive PTE entries when THP is enabled.  More work is
   needed, but this makes thins better - our own HMM selftests now succeed.
 
 - The 2 patch series "mm: zswap: remove z3fold and zbud" from Yosry
   Ahmed remove the z3fold and zbud implementations.  They have been
   deprecated for half a year and nobody has complained.
 
 - The 5 patch series "mm: further simplify VMA merge operation" from
   Lorenzo Stoakes implements numerous simplifications in this area.  No
   runtime effects are anticipated.
 
 - The 4 patch series "mm/madvise: remove redundant mmap_lock operations
   from process_madvise()" from SeongJae Park rationalizes the locking in
   the madvise() implementation.  Performance gains of 20-25% were observed
   in one MADV_DONTNEED microbenchmark.
 
 - The 12 patch series "Tiny cleanup and improvements about SWAP code"
   from Baoquan He contains a number of touchups to issues which Baoquan
   noticed when working on the swap code.
 
 - The 2 patch series "mm: kmemleak: Usability improvements" from Catalin
   Marinas implements a couple of improvements to the kmemleak user-visible
   output.
 
 - The 2 patch series "mm/damon/paddr: fix large folios access and
   schemes handling" from Usama Arif provides a couple of fixes for DAMON's
   handling of large folios.
 
 - The 3 patch series "mm/damon/core: fix wrong and/or useless
   damos_walk() behaviors" from SeongJae Park fixes a few issues with the
   accuracy of kdamond's walking of DAMON regions.
 
 - The 3 patch series "expose mapping wrprotect, fix fb_defio use" from
   Lorenzo Stoakes changes the interaction between framebuffer deferred-io
   and core MM.  No functional changes are anticipated - this is
   preparatory work for the future removal of page structure fields.
 
 - The 4 patch series "mm/damon: add support for hugepage_size DAMOS
   filter" from Usama Arif adds a DAMOS filter which permits the filtering
   by huge page sizes.
 
 - The 4 patch series "mm: permit guard regions for file-backed/shmem
   mappings" from Lorenzo Stoakes extends the guard region feature from its
   present "anon mappings only" state.  The feature now covers shmem and
   file-backed mappings.
 
 - The 4 patch series "mm: batched unmap lazyfree large folios during
   reclamation" from Barry Song cleans up and speeds up the unmapping for
   pte-mapped large folios.
 
 - The 18 patch series "reimplement per-vma lock as a refcount" from
   Suren Baghdasaryan puts the vm_lock back into the vma.  Our reasons for
   pulling it out were largely bogus and that change made the code more
   messy.  This patchset provides small (0-10%) improvements on one
   microbenchmark.
 
 - The 5 patch series "Docs/mm/damon: misc DAMOS filters documentation
   fixes and improves" from SeongJae Park does some maintenance work on the
   DAMON docs.
 
 - The 27 patch series "hugetlb/CMA improvements for large systems" from
   Frank van der Linden addresses a pile of issues which have been observed
   when using CMA on large machines.
 
 - The 2 patch series "mm/damon: introduce DAMOS filter type for unmapped
   pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the
   page's mapped/unmapped status.
 
 - The 19 patch series "zsmalloc/zram: there be preemption" from Sergey
   Senozhatsky teaches zram to run its compression and decompression
   operations preemptibly.
 
 - The 12 patch series "selftests/mm: Some cleanups from trying to run
   them" from Brendan Jackman fixes a pile of unrelated issues which
   Brendan encountered while runnimg our selftests.
 
 - The 2 patch series "fs/proc/task_mmu: add guard region bit to pagemap"
   from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
   determine whether a particular page is a guard page.
 
 - The 7 patch series "mm, swap: remove swap slot cache" from Kairui Song
   removes the swap slot cache from the allocation path - it simply wasn't
   being effective.
 
 - The 5 patch series "mm: cleanups for device-exclusive entries (hmm)"
   from David Hildenbrand implements a number of unrelated cleanups in this
   code.
 
 - The 5 patch series "mm: Rework generic PTDUMP configs" from Anshuman
   Khandual implements a number of preparatoty cleanups to the
   GENERIC_PTDUMP Kconfig logic.
 
 - The 8 patch series "mm/damon: auto-tune aggregation interval" from
   SeongJae Park implements a feedback-driven automatic tuning feature for
   DAMON's aggregation interval tuning.
 
 - The 5 patch series "Fix lazy mmu mode" from Ryan Roberts fixes some
   issues in powerpc, sparc and x86 lazy MMU implementations.  Ryan did
   this in preparation for implementing lazy mmu mode for arm64 to optimize
   vmalloc.
 
 - The 2 patch series "mm/page_alloc: Some clarifications for migratetype
   fallback" from Brendan Jackman reworks some commentary to make the code
   easier to follow.
 
 - The 3 patch series "page_counter cleanup and size reduction" from
   Shakeel Butt cleans up the page_counter code and fixes a size increase
   which we accidentally added late last year.
 
 - The 3 patch series "Add a command line option that enables control of
   how many threads should be used to allocate huge pages" from Thomas
   Prescher does that.  It allows the careful operator to significantly
   reduce boot time by tuning the parallalization of huge page
   initialization.
 
 - The 3 patch series "Fix calculations in trace_balance_dirty_pages()
   for cgwb" from Tang Yizhou fixes the tracing output from the dirty page
   balancing code.
 
 - The 9 patch series "mm/damon: make allow filters after reject filters
   useful and intuitive" from SeongJae Park improves the handling of allow
   and reject filters.  Behaviour is made more consistent and the
   documention is updated accordingly.
 
 - The 5 patch series "Switch zswap to object read/write APIs" from Yosry
   Ahmed updates zswap to the new object read/write APIs and thus permits
   the removal of some legacy code from zpool and zsmalloc.
 
 - The 6 patch series "Some trivial cleanups for shmem" from Baolin Wang
   does as it claims.
 
 - The 20 patch series "fs/dax: Fix ZONE_DEVICE page reference counts"
   from Alistair Popple regularizes the weird ZONE_DEVICE page refcount
   handling in DAX, permittig the removal of a number of special-case
   checks.
 
 - The 4 patch series "refactor mremap and fix bug" from Lorenzo Stoakes
   is a preparatoty refactoring and cleanup of the mremap() code.
 
 - The 20 patch series "mm: MM owner tracking for large folios (!hugetlb)
   + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
   which we determine whether a large folio is known to be mapped
   exclusively into a single MM.
 
 - The 8 patch series "mm/damon: add sysfs dirs for managing DAMOS
   filters based on handling layers" from SeongJae Park adds a couple of
   new sysfs directories to ease the management of DAMON/DAMOS filters.
 
 - The 13 patch series "arch, mm: reduce code duplication in mem_init()"
   from Mike Rapoport consolidates many per-arch implementations of
   mem_init() into code generic code, where that is practical.
 
 - The 13 patch series "mm/damon/sysfs: commit parameters online via
   damon_call()" from SeongJae Park continues the cleaning up of sysfs
   access to DAMON internal data.
 
 - The 3 patch series "mm: page_ext: Introduce new iteration API" from
   Luiz Capitulino reworks the page_ext initialization to fix a boot-time
   crash which was observed with an unusual combination of compile and
   cmdline options.
 
 - The 8 patch series "Buddy allocator like (or non-uniform) folio split"
   from Zi Yan reworks the code to split a folio into smaller folios.  The
   main benefit is lessened memory consumption: fewer post-split folios are
   generated.
 
 - The 2 patch series "Minimize xa_node allocation during xarry split"
   from Zi Yan reduces the number of xarray xa_nodes which are generated
   during an xarray split.
 
 - The 2 patch series "drivers/base/memory: Two cleanups" from Gavin Shan
   performs some maintenance work on the drivers/base/memory code.
 
 - The 3 patch series "Add tracepoints for lowmem reserves, watermarks
   and totalreserve_pages" from Martin Liu adds some more tracepoints to
   the page allocator code.
 
 - The 4 patch series "mm/madvise: cleanup requests validations and
   classifications" from SeongJae Park cleans up some warts which SeongJae
   observed during his earlier madvise work.
 
 - The 3 patch series "mm/hwpoison: Fix regressions in memory failure
   handling" from Shuai Xue addresses two quite serious regressions which
   Shuai has observed in the memory-failure implementation.
 
 - The 5 patch series "mm: reliable huge page allocator" from Johannes
   Weiner makes huge page allocations cheaper and more reliable by reducing
   fragmentation.
 
 - The 5 patch series "Minor memcg cleanups & prep for memdescs" from
   Matthew Wilcox is preparatory work for the future implementation of
   memdescs.
 
 - The 4 patch series "track memory used by balloon drivers" from Nico
   Pache introduces a way to track memory used by our various balloon
   drivers.
 
 - The 2 patch series "mm/damon: introduce DAMOS filter type for active
   pages" from Nhat Pham permits users to filter for active/inactive pages,
   separately for file and anon pages.
 
 - The 2 patch series "Adding Proactive Memory Reclaim Statistics" from
   Hao Jia separates the proactive reclaim statistics from the direct
   reclaim statistics.
 
 - The 2 patch series "mm/vmscan: don't try to reclaim hwpoison folio"
   from Jinjiang Tu fixes our handling of hwpoisoned pages within the
   reclaim code.
 -----BEGIN PGP SIGNATURE-----
 
 iHQEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ+nZaAAKCRDdBJ7gKXxA
 jsOWAPiP4r7CJHMZRK4eyJOkvS1a1r+TsIarrFZtjwvf/GIfAQCEG+JDxVfUaUSF
 Ee93qSSLR1BkNdDw+931Pu0mXfbnBw==
 =Pn2K
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - The series "Enable strict percpu address space checks" from Uros
   Bizjak uses x86 named address space qualifiers to provide
   compile-time checking of percpu area accesses.

   This has caused a small amount of fallout - two or three issues were
   reported. In all cases the calling code was found to be incorrect.

 - The series "Some cleanup for memcg" from Chen Ridong implements some
   relatively monir cleanups for the memcontrol code.

 - The series "mm: fixes for device-exclusive entries (hmm)" from David
   Hildenbrand fixes a boatload of issues which David found then using
   device-exclusive PTE entries when THP is enabled. More work is
   needed, but this makes thins better - our own HMM selftests now
   succeed.

 - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
   remove the z3fold and zbud implementations. They have been deprecated
   for half a year and nobody has complained.

 - The series "mm: further simplify VMA merge operation" from Lorenzo
   Stoakes implements numerous simplifications in this area. No runtime
   effects are anticipated.

 - The series "mm/madvise: remove redundant mmap_lock operations from
   process_madvise()" from SeongJae Park rationalizes the locking in the
   madvise() implementation. Performance gains of 20-25% were observed
   in one MADV_DONTNEED microbenchmark.

 - The series "Tiny cleanup and improvements about SWAP code" from
   Baoquan He contains a number of touchups to issues which Baoquan
   noticed when working on the swap code.

 - The series "mm: kmemleak: Usability improvements" from Catalin
   Marinas implements a couple of improvements to the kmemleak
   user-visible output.

 - The series "mm/damon/paddr: fix large folios access and schemes
   handling" from Usama Arif provides a couple of fixes for DAMON's
   handling of large folios.

 - The series "mm/damon/core: fix wrong and/or useless damos_walk()
   behaviors" from SeongJae Park fixes a few issues with the accuracy of
   kdamond's walking of DAMON regions.

 - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
   Stoakes changes the interaction between framebuffer deferred-io and
   core MM. No functional changes are anticipated - this is preparatory
   work for the future removal of page structure fields.

 - The series "mm/damon: add support for hugepage_size DAMOS filter"
   from Usama Arif adds a DAMOS filter which permits the filtering by
   huge page sizes.

 - The series "mm: permit guard regions for file-backed/shmem mappings"
   from Lorenzo Stoakes extends the guard region feature from its
   present "anon mappings only" state. The feature now covers shmem and
   file-backed mappings.

 - The series "mm: batched unmap lazyfree large folios during
   reclamation" from Barry Song cleans up and speeds up the unmapping
   for pte-mapped large folios.

 - The series "reimplement per-vma lock as a refcount" from Suren
   Baghdasaryan puts the vm_lock back into the vma. Our reasons for
   pulling it out were largely bogus and that change made the code more
   messy. This patchset provides small (0-10%) improvements on one
   microbenchmark.

 - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
   improves" from SeongJae Park does some maintenance work on the DAMON
   docs.

 - The series "hugetlb/CMA improvements for large systems" from Frank
   van der Linden addresses a pile of issues which have been observed
   when using CMA on large machines.

 - The series "mm/damon: introduce DAMOS filter type for unmapped pages"
   from SeongJae Park enables users of DMAON/DAMOS to filter my the
   page's mapped/unmapped status.

 - The series "zsmalloc/zram: there be preemption" from Sergey
   Senozhatsky teaches zram to run its compression and decompression
   operations preemptibly.

 - The series "selftests/mm: Some cleanups from trying to run them" from
   Brendan Jackman fixes a pile of unrelated issues which Brendan
   encountered while runnimg our selftests.

 - The series "fs/proc/task_mmu: add guard region bit to pagemap" from
   Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
   determine whether a particular page is a guard page.

 - The series "mm, swap: remove swap slot cache" from Kairui Song
   removes the swap slot cache from the allocation path - it simply
   wasn't being effective.

 - The series "mm: cleanups for device-exclusive entries (hmm)" from
   David Hildenbrand implements a number of unrelated cleanups in this
   code.

 - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
   implements a number of preparatoty cleanups to the GENERIC_PTDUMP
   Kconfig logic.

 - The series "mm/damon: auto-tune aggregation interval" from SeongJae
   Park implements a feedback-driven automatic tuning feature for
   DAMON's aggregation interval tuning.

 - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
   powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
   preparation for implementing lazy mmu mode for arm64 to optimize
   vmalloc.

 - The series "mm/page_alloc: Some clarifications for migratetype
   fallback" from Brendan Jackman reworks some commentary to make the
   code easier to follow.

 - The series "page_counter cleanup and size reduction" from Shakeel
   Butt cleans up the page_counter code and fixes a size increase which
   we accidentally added late last year.

 - The series "Add a command line option that enables control of how
   many threads should be used to allocate huge pages" from Thomas
   Prescher does that. It allows the careful operator to significantly
   reduce boot time by tuning the parallalization of huge page
   initialization.

 - The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
   from Tang Yizhou fixes the tracing output from the dirty page
   balancing code.

 - The series "mm/damon: make allow filters after reject filters useful
   and intuitive" from SeongJae Park improves the handling of allow and
   reject filters. Behaviour is made more consistent and the documention
   is updated accordingly.

 - The series "Switch zswap to object read/write APIs" from Yosry Ahmed
   updates zswap to the new object read/write APIs and thus permits the
   removal of some legacy code from zpool and zsmalloc.

 - The series "Some trivial cleanups for shmem" from Baolin Wang does as
   it claims.

 - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
   Alistair Popple regularizes the weird ZONE_DEVICE page refcount
   handling in DAX, permittig the removal of a number of special-case
   checks.

 - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
   preparatoty refactoring and cleanup of the mremap() code.

 - The series "mm: MM owner tracking for large folios (!hugetlb) +
   CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
   which we determine whether a large folio is known to be mapped
   exclusively into a single MM.

 - The series "mm/damon: add sysfs dirs for managing DAMOS filters based
   on handling layers" from SeongJae Park adds a couple of new sysfs
   directories to ease the management of DAMON/DAMOS filters.

 - The series "arch, mm: reduce code duplication in mem_init()" from
   Mike Rapoport consolidates many per-arch implementations of
   mem_init() into code generic code, where that is practical.

 - The series "mm/damon/sysfs: commit parameters online via
   damon_call()" from SeongJae Park continues the cleaning up of sysfs
   access to DAMON internal data.

 - The series "mm: page_ext: Introduce new iteration API" from Luiz
   Capitulino reworks the page_ext initialization to fix a boot-time
   crash which was observed with an unusual combination of compile and
   cmdline options.

 - The series "Buddy allocator like (or non-uniform) folio split" from
   Zi Yan reworks the code to split a folio into smaller folios. The
   main benefit is lessened memory consumption: fewer post-split folios
   are generated.

 - The series "Minimize xa_node allocation during xarry split" from Zi
   Yan reduces the number of xarray xa_nodes which are generated during
   an xarray split.

 - The series "drivers/base/memory: Two cleanups" from Gavin Shan
   performs some maintenance work on the drivers/base/memory code.

 - The series "Add tracepoints for lowmem reserves, watermarks and
   totalreserve_pages" from Martin Liu adds some more tracepoints to the
   page allocator code.

 - The series "mm/madvise: cleanup requests validations and
   classifications" from SeongJae Park cleans up some warts which
   SeongJae observed during his earlier madvise work.

 - The series "mm/hwpoison: Fix regressions in memory failure handling"
   from Shuai Xue addresses two quite serious regressions which Shuai
   has observed in the memory-failure implementation.

 - The series "mm: reliable huge page allocator" from Johannes Weiner
   makes huge page allocations cheaper and more reliable by reducing
   fragmentation.

 - The series "Minor memcg cleanups & prep for memdescs" from Matthew
   Wilcox is preparatory work for the future implementation of memdescs.

 - The series "track memory used by balloon drivers" from Nico Pache
   introduces a way to track memory used by our various balloon drivers.

 - The series "mm/damon: introduce DAMOS filter type for active pages"
   from Nhat Pham permits users to filter for active/inactive pages,
   separately for file and anon pages.

 - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
   separates the proactive reclaim statistics from the direct reclaim
   statistics.

 - The series "mm/vmscan: don't try to reclaim hwpoison folio" from
   Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
   code.

* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
  mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
  x86/mm: restore early initialization of high_memory for 32-bits
  mm/vmscan: don't try to reclaim hwpoison folio
  mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
  cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
  mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
  selftests/mm: speed up split_huge_page_test
  selftests/mm: uffd-unit-tests support for hugepages > 2M
  docs/mm/damon/design: document active DAMOS filter type
  mm/damon: implement a new DAMOS filter type for active pages
  fs/dax: don't disassociate zero page entries
  MM documentation: add "Unaccepted" meminfo entry
  selftests/mm: add commentary about 9pfs bugs
  fork: use __vmalloc_node() for stack allocation
  docs/mm: Physical Memory: Populate the "Zones" section
  xen: balloon: update the NR_BALLOON_PAGES state
  hv_balloon: update the NR_BALLOON_PAGES state
  balloon_compaction: update the NR_BALLOON_PAGES state
  meminfo: add a per node counter for balloon drivers
  mm: remove references to folio in __memcg_kmem_uncharge_page()
  ...
2025-04-01 09:29:18 -07:00
David Hildenbrand
e63ee43e3e mm: CONFIG_NO_PAGE_MAPCOUNT to prepare for not maintain per-page mapcounts in large folios
We're close to the finishing line: let's introduce a new
CONFIG_NO_PAGE_MAPCOUNT config option where we will incrementally remove
any dependencies on per-page mapcounts in large folios.  Once that's done,
we'll stop maintaining the per-page mapcounts with this config option
enabled.

CONFIG_NO_PAGE_MAPCOUNT will be EXPERIMENTAL for now, as we'll have to
learn about some of the real world impact of some of the implications.

As writing "!CONFIG_NO_PAGE_MAPCOUNT" is really nasty, let's introduce a
helper config option "CONFIG_PAGE_MAPCOUNT" that expresses the negation.

Link: https://lkml.kernel.org/r/20250303163014.1128035-16-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 22:06:46 -07:00
David Hildenbrand
6af8cb80d3 mm/rmap: basic MM owner tracking for large folios (!hugetlb)
For small folios, we traditionally use the mapcount to decide whether it
was "certainly mapped exclusively" by a single MM (mapcount == 1) or
whether it "maybe mapped shared" by multiple MMs (mapcount > 1).  For
PMD-sized folios that were PMD-mapped, we were able to use a similar
mechanism (single PMD mapping), but for PTE-mapped folios and in the
future folios that span multiple PMDs, this does not work.

So we need a different mechanism to handle large folios.  Let's add a new
mechanism to detect whether a large folio is "certainly mapped
exclusively", or whether it is "maybe mapped shared".

We'll use this information next to optimize CoW reuse for PTE-mapped
anonymous THP, and to convert folio_likely_mapped_shared() to
folio_maybe_mapped_shared(), independent of per-page mapcounts.

For each large folio, we'll have two slots, whereby a slot stores:
 (1) an MM id: unique id assigned to each MM
 (2) a per-MM mapcount

If a slot is unoccupied, it can be taken by the next MM that maps folio
page.

In addition, we'll remember the current state -- "mapped exclusively" vs. 
"maybe mapped shared" -- and use a bit spinlock to sync on updates and to
reduce the total number of atomic accesses on updates.  In the future, it
might be possible to squeeze a proper spinlock into "struct folio".  For
now, keep it simple, as we require the whole thing with THP only, that is
incompatible with RT.

As we have to squeeze this information into the "struct folio" of even
folios of order-1 (2 pages), and we generally want to reduce the required
metadata, we'll assign each MM a unique ID that can fit into an int.  In
total, we can squeeze everything into 4x int (2x long) on 64bit.

32bit support is a bit challenging, because we only have 2x long == 2x int
in order-1 folios.  But we can make it work for now, because we neither
expect many MMs nor very large folios on 32bit.

We will reliably detect folios as "mapped exclusively" vs.  "mapped
shared" as long as only two MMs map pages of a folio at one point in time
-- for example with fork() and short-lived child processes, or with apps
that hand over state from one instance to another.

As soon as three MMs are involved at the same time, we might detect "maybe
mapped shared" although the folio is "mapped exclusively".

Example 1:

(1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0
(2) App2 faults in a folio page -> Tracked as MM1
(4) App1 unmaps all folio pages

 -> We will detect "mapped exclusively".

Example 2:

(1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0
(2) App2 faults in a folio page -> Tracked as MM1
(3) App3 faults in a folio page -> No slot available, tracked as "unknown"
(4) App1 and App2 unmap all folio pages

 -> We will detect "maybe mapped shared".

Make use of __always_inline to keep possible performance degradation when
(un)mapping large folios to a minimum.

Note: by squeezing the two flags into the "unsigned long" that stores the
MM ids, we can use non-atomic __bit_spin_unlock() and non-atomic
setting/clearing of the "maybe mapped shared" bit, effectively not adding
any new atomics on the hot path when updating the large mapcount + new
metadata, which further helps reduce the runtime overhead in
micro-benchmarks.

Link: https://lkml.kernel.org/r/20250303163014.1128035-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17 22:06:46 -07:00
Frank van der Linden
d65917c423 mm/sparse: allow for alternate vmemmap section init at boot
Add functions that are called just before the per-section memmap is
initialized and just before the memmap page structures are initialized. 
They are called sparse_vmemmap_init_nid_early and
sparse_vmemmap_init_nid_late, respectively.

This allows for mm subsystems to add calls to initialize memmap and page
structures in a specific way, if using SPARSEMEM_VMEMMAP.  Specifically,
hugetlb can pre-HVO bootmem allocated pages that way, so that no time and
resources are wasted on allocating vmemmap pages, only to free them later
(and possibly unnecessarily running the system out of memory in the
process).

Refactor some code and export a few convenience functions for external
use.

In sparse_init_nid, skip any sections that are already initialized, e.g. 
they have been initialized by sparse_vmemmap_init_nid_early already.

The hugetlb code to use these functions will be added in a later commit.

Export section_map_size, as any alternate memmap init code will want to
use it.

The internal config option to enable this is SPARSEMEM_VMEMMAP_PREINIT,
which is selected if an architecture-specific option,
ARCH_WANT_HUGETLB_VMEMMAP_PREINIT, is set.  In the future, if other
subsystems want to do preinit too, they can do it in a similar fashion.

The internal config option is there because a section flag is used, and
the number of flags available is architecture-dependent (see mmzone.h). 
Architecures can decide if there is room for the flag when enabling
options that select SPARSEMEM_VMEMMAP_PREINIT.

Fortunately, as of right now, all sparse vmemmap using architectures do
have room.

Link: https://lkml.kernel.org/r/20250228182928.2645936-11-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:27 -07:00
Yosry Ahmed
6df8bae8e8 mm: zbud: remove zbud
The zbud compressed pages allocator is rarely used, most users use
zsmalloc.  zbud consumes much more memory (only stores 1 or 2 compressed
pages per physical page).  The only advantage of zbud is a marginal
performance improvement that by no means justify the memory overhead.

Historically, zsmalloc had significantly worse latency than zbud and
z3fold but offered better memory savings.  This is no longer the case as
shown by a simple recent analysis [1].  In a kernel build test on tmpfs in
a limited cgroup, zbud 2-3% less time than zsmalloc, but at the cost of
using ~32% more memory (1.5G vs 1.13G).  The tradeoff does not make sense
for zbud in any practical scenario.

The only alleged advantage of zbud is not having the dependency on
CONFIG_MMU, but CONFIG_SWAP already depends on CONFIG_MMU anyway, and zbud
is only used by zswap.

Remove zbud after z3fold's removal, leaving zsmalloc as the one and only
zpool allocator.  Leave the removal of the zpool API (and its associated
config options) to a followup cleanup after no more allocators show up.

Deprecating zbud for a few cycles before removing it was initially
proposed [2], like z3fold was marked as deprecated for 2 cycles [3]. 
However, Johannes rightfully pointed out that the 2 cycles is too short
for most downstream consumers, and z3fold was deprecated first only as a
courtesy anyway.

[1]https://lore.kernel.org/lkml/CAJD7tkbRF6od-2x_L8-A1QL3=2Ww13sCj4S3i4bNndqF+3+_Vg@mail.gmail.com/
[2]https://lore.kernel.org/lkml/Z5gdnSX5Lv-nfjQL@google.com/
[3]https://lore.kernel.org/lkml/20240904233343.933462-1-yosryahmed@google.com/

Link: https://lkml.kernel.org/r/20250129180633.3501650-3-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
Yosry Ahmed
58ba73e521 mm: z3fold: remove z3fold
Patch series "mm: zswap: remove z3fold and zbud", v2.

After 2 cycles of deprecating z3fold, remove it as well as zbud (rationale
in specific patches).


This patch (of 2):

Z3fold has been marked as deprecated for 2 cycles and no one complained,
as expected.  As there are no known users, remove the code now.

Link: https://lkml.kernel.org/r/20250129180633.3501650-1-yosry.ahmed@linux.dev
Link: https://lkml.kernel.org/r/20250129180633.3501650-2-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:01 -07:00
Vlastimil Babka
c9f8f1242a slab: don't batch kvfree_rcu() with SLUB_TINY
kvfree_rcu() is batched for better performance except on TINY_RCU, which
is a simple implementation for small UP systems. Similarly SLUB_TINY is
an option intended for small systems, whether or not used together with
TINY_RCU. In case SLUB_TINY is used with !TINY_RCU, it makes arguably
sense to not do the batching and limit the memory footprint. It's also
suboptimal to have RCU-specific #ifdefs in slab code.

With that, add CONFIG_KVFREE_RCU_BATCHED to determine whether batching
kvfree_rcu() implementation is used. It is not set by a user prompt, but
enabled by default and disabled in case TINY_RCU or SLUB_TINY are
enabled.

Use the new config for #ifdef's in slab code and extend their scope to
cover all code used by the batched kvfree_rcu(). For example there's no
need to perform kvfree_rcu_init() if the batching is disabled.

Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2025-02-05 10:45:35 +01:00
Gregory Price
44d46b76c3 mm: add build-time option for hotplug memory default online type
Memory hotplug presently auto-onlines memory into a zone the kernel deems
appropriate if CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE=y.

The memhp_default_state boot param enables runtime config, but it's not
possible to do this at build-time.

Remove CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE, and replace it with
CONFIG_MHP_DEFAULT_ONLINE_TYPE_* choices that sync with the boot param.

Selections:
  CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE
    => mhp_default_online_type = "offline"
       Memory will not be onlined automatically.

  CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO
    => mhp_default_online_type = "online"
       Memory will be onlined automatically in a zone deemed.
       appropriate by the kernel.

  CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_KERNEL
    => mhp_default_online_type = "online_kernel"
       Memory will be onlined automatically.
       The zone may allow kernel data (e.g. ZONE_NORMAL).

  CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_MOVABLE
    => mhp_default_online_type = "online_movable"
       Memory will be onlined automatically.
       The zone will be ZONE_MOVABLE.

Default to CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE to match the existing
default CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE=n behavior.

Existing users of CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE=y should use
CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO.

[gourry@gourry.net: update KConfig comments]
  Link: https://lkml.kernel.org/r/20241226182918.648799-1-gourry@gourry.net
Link: https://lkml.kernel.org/r/20241220210709.300066-1-gourry@gourry.net
Signed-off-by: Gregory Price <gourry@gourry.net>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:21 -08:00
Qi Zheng
6375e95f38 mm: pgtable: reclaim empty PTE page in madvise(MADV_DONTNEED)
Now in order to pursue high performance, applications mostly use some
high-performance user-mode memory allocators, such as jemalloc or
tcmalloc.  These memory allocators use madvise(MADV_DONTNEED or MADV_FREE)
to release physical memory, but neither MADV_DONTNEED nor MADV_FREE will
release page table memory, which may cause huge page table memory usage.

The following are a memory usage snapshot of one process which actually
happened on our server:

        VIRT:  55t
        RES:   590g
        VmPTE: 110g

In this case, most of the page table entries are empty.  For such a PTE
page where all entries are empty, we can actually free it back to the
system for others to use.

As a first step, this commit aims to synchronously free the empty PTE
pages in madvise(MADV_DONTNEED) case.  We will detect and free empty PTE
pages in zap_pte_range(), and will add zap_details.reclaim_pt to exclude
cases other than madvise(MADV_DONTNEED).

Once an empty PTE is detected, we first try to hold the pmd lock within
the pte lock.  If successful, we clear the pmd entry directly (fast path).
Otherwise, we wait until the pte lock is released, then re-hold the pmd
and pte locks and loop PTRS_PER_PTE times to check pte_none() to re-detect
whether the PTE page is empty and free it (slow path).

For other cases such as madvise(MADV_FREE), consider scanning and freeing
empty PTE pages asynchronously in the future.

The following code snippet can show the effect of optimization:

        mmap 50G
        while (1) {
                for (; i < 1024 * 25; i++) {
                        touch 2M memory
                        madvise MADV_DONTNEED 2M
                }
        }

As we can see, the memory usage of VmPTE is reduced:

                        before                          after
VIRT                   50.0 GB                        50.0 GB
RES                     3.1 MB                         3.1 MB
VmPTE                102640 KB                         240 KB

[zhengqi.arch@bytedance.com: fix uninitialized symbol 'ptl']
  Link: https://lkml.kernel.org/r/20241206112348.51570-1-zhengqi.arch@bytedance.com
  Link: https://lore.kernel.org/linux-mm/224e6a4e-43b5-4080-bdd8-b0a6fb2f0853@stanley.mountain/
Link: https://lkml.kernel.org/r/92aba2b319a734913f18ba41e7d86a265f0b84e2.1733305182.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13 22:40:48 -08:00
Linus Torvalds
ba1f9c8fe3 arm64 updates for 6.13:
* Support for running Linux in a protected VM under the Arm Confidential
   Compute Architecture (CCA)
 
 * Guarded Control Stack user-space support. Current patches follow the
   x86 ABI of implicitly creating a shadow stack on clone(). Subsequent
   patches (already on the list) will add support for clone3() allowing
   finer-grained control of the shadow stack size and placement from libc
 
 * AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are
   getting close with the upcoming dpISA support)
 
 * Other arch features:
 
   - In-kernel use of the memcpy instructions, FEAT_MOPS (previously only
     exposed to user; uaccess support not merged yet)
 
   - MTE: hugetlbfs support and the corresponding kselftests
 
   - Optimise CRC32 using the PMULL instructions
 
   - Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG
 
   - Optimise the kernel TLB flushing to use the range operations
 
   - POE/pkey (permission overlays): further cleanups after bringing the
     signal handler in line with the x86 behaviour for 6.12
 
 * arm64 perf updates:
 
   - Support for the NXP i.MX91 PMU in the existing IMX driver
 
   - Support for Ampere SoCs in the Designware PCIe PMU driver
 
   - Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC
 
   - Support for Samsung's 'Mongoose' CPU PMU
 
   - Support for PMUv3.9 finer-grained userspace counter access control
 
   - Switch back to platform_driver::remove() now that it returns 'void'
 
   - Add some missing events for the CXL PMU driver
 
 * Miscellaneous arm64 fixes/cleanups:
 
   - Page table accessors cleanup: type updates, drop unused macros,
     reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity
     check addresses before runtime P4D/PUD folding
 
   - Command line override for ID_AA64MMFR0_EL1.ECV (advertising the
     FEAT_ECV for the generic timers) allowing Linux to boot with
     firmware deployments that don't set SCTLR_EL3.ECVEn
 
   - ACPI/arm64: tighten the check for the array of platform timer
     structures and adjust the error handling procedure in
     gtdt_parse_timer_block()
 
   - Optimise the cache flush for the uprobes xol slot (skip if no
     change) and other uprobes/kprobes cleanups
 
   - Fix the context switching of tpidrro_el0 when kpti is enabled
 
   - Dynamic shadow call stack fixes
 
   - Sysreg updates
 
   - Various arm64 kselftest improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmc5POIACgkQa9axLQDI
 XvEDYA//a3eeNkgMuGdnSCVcLz+zy+oNwAwboG/4X1DqL8jiCbI4npwugPx95RIA
 YZOUvo9T2aL3OyefpUHll4gFHqx9OwoZIig2F70TEUmlPsGUbh0KBkdfQF3xZPdl
 EwV0kHSGEqMWMBwsGJGwgCYrUaf1MUQzh1GBl7VJ2ts5XsJBaBeOyKkysij26wtZ
 V+aHq2IUx7qQS7+HC/4P6IoHxKziFcsCMovaKaynP4cw9xXBQbDMcNlHEwndOMyk
 pu2zrv7GG0j3KQuVP/2Alf5FKhmI0GVGP/6Nc/zsOmw96w8Kf7HfzEtkHawr2aRq
 rqg/c9ivzDn1p+fUBo4ZYtrRk4IAY+yKu6hdzdLTP5+bQrBTWTO9rjQVBm9FAGYT
 sCdEj1NqzvExvNHD7X6ut/GJ05lmce3K+qeSXSEysN9gqiT3eomYWMXrD2V2lxzb
 rIDDcb/icfaqjt14Mksh19r/rzNeq7noj9CGSmcqw0BHZfHzl38Lai6pdfYzCNyn
 vCM/c4c1D/WWX8/lifO1JZVbhDk1jy82Iphg2KEhL8iKPxDsKBBZLmYuU1oa7tMo
 WryGAz9+GQwd+W9chFuaOEtMnzvW2scEJ5Eb2fEf0Qj0aEurkL+C9dZR6o1GN77V
 DBUxtU628Ef4PJJGfbNCwZzdd8UPYG3a/mKfQQ3dz0oz2LySlW4=
 =wDot
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Support for running Linux in a protected VM under the Arm
   Confidential Compute Architecture (CCA)

 - Guarded Control Stack user-space support. Current patches follow the
   x86 ABI of implicitly creating a shadow stack on clone(). Subsequent
   patches (already on the list) will add support for clone3() allowing
   finer-grained control of the shadow stack size and placement from
   libc

 - AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are
   getting close with the upcoming dpISA support)

 - Other arch features:

     - In-kernel use of the memcpy instructions, FEAT_MOPS (previously
       only exposed to user; uaccess support not merged yet)

     - MTE: hugetlbfs support and the corresponding kselftests

     - Optimise CRC32 using the PMULL instructions

     - Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG

     - Optimise the kernel TLB flushing to use the range operations

     - POE/pkey (permission overlays): further cleanups after bringing
       the signal handler in line with the x86 behaviour for 6.12

 - arm64 perf updates:

     - Support for the NXP i.MX91 PMU in the existing IMX driver

     - Support for Ampere SoCs in the Designware PCIe PMU driver

     - Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC

     - Support for Samsung's 'Mongoose' CPU PMU

     - Support for PMUv3.9 finer-grained userspace counter access
       control

     - Switch back to platform_driver::remove() now that it returns
       'void'

     - Add some missing events for the CXL PMU driver

 - Miscellaneous arm64 fixes/cleanups:

     - Page table accessors cleanup: type updates, drop unused macros,
       reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity
       check addresses before runtime P4D/PUD folding

     - Command line override for ID_AA64MMFR0_EL1.ECV (advertising the
       FEAT_ECV for the generic timers) allowing Linux to boot with
       firmware deployments that don't set SCTLR_EL3.ECVEn

     - ACPI/arm64: tighten the check for the array of platform timer
       structures and adjust the error handling procedure in
       gtdt_parse_timer_block()

     - Optimise the cache flush for the uprobes xol slot (skip if no
       change) and other uprobes/kprobes cleanups

     - Fix the context switching of tpidrro_el0 when kpti is enabled

     - Dynamic shadow call stack fixes

     - Sysreg updates

     - Various arm64 kselftest improvements

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (168 commits)
  arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
  kselftest/arm64: Try harder to generate different keys during PAC tests
  kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
  arm64/ptrace: Clarify documentation of VL configuration via ptrace
  kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
  acpi/arm64: remove unnecessary cast
  arm64/mm: Change protval as 'pteval_t' in map_range()
  kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
  kselftest/arm64: Add FPMR coverage to fp-ptrace
  kselftest/arm64: Expand the set of ZA writes fp-ptrace does
  kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
  kselftest/arm64: Enable build of PAC tests with LLVM=1
  kselftest/arm64: Check that SVCR is 0 in signal handlers
  selftests/mm: Fix unused function warning for aarch64_write_signal_pkey()
  kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
  kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
  kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
  kselftest/arm64: Fix build with stricter assemblers
  arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
  arm64/scs: Deal with 64-bit relative offsets in FDE frames
  ...
2024-11-18 18:10:37 -08:00
Huang Ying
b7c5f9a1fb resource: remove dependency on SPARSEMEM from GET_FREE_REGION
We want to use the functions (get_free_mem_region()) configured via
GET_FREE_REGION in resource kunit tests.  However, GET_FREE_REGION
depends on SPARSEMEM now.  This makes resource kunit tests cannot be
built on some architectures lacking SPARSEMEM, or causes config warning
as follows,

  WARNING: unmet direct dependencies detected for GET_FREE_REGION
  Depends on [n]: SPARSEMEM [=n]
  Selected by [y]:
  - RESOURCE_KUNIT_TEST [=y] && RUNTIME_TESTING_MENU [=y] && KUNIT [=y]

When get_free_mem_region() was introduced the only consumers were those
looking to pass the address range to memremap_pages().  That address
range needed to be mindful of the maximum addressable platform physical
address which at the time only SPARSMEM defined via MAX_PHYSMEM_BITS.

Given that memremap_pages() also depended on SPARSEMEM via ZONE_DEVICE,
it was easier to just depend on that definition than invent a general
MAX_PHYSMEM_BITS concept outside of SPARSEMEM.

Turns out that decision was buggy and did not account for KASAN
consumption of physical address space.  That problem was resolved
recently with commit ea72ce5da228 ("x86/kaslr: Expose and use the end
of the physical memory address space"), and GET_FREE_REGION dropped its
MAX_PHYSMEM_BITS dependency.

Then commit 99185c10d5d9 ("resource, kunit: add test case for
region_intersects()"), went ahead and fixed up the only remaining
dependency on SPARSEMEM which was usage of the PA_SECTION_SHIFT macro
for setting the default alignment.  A PAGE_SIZE fallback is fine in the
SPARSEMEM=n case.

With those build dependencies gone GET_FREE_REGION no longer depends on
SPARSEMEM.  So, the patch removes dependency on SPARSEMEM from
GET_FREE_REGION to fix the build issues.

Link: https://lkml.kernel.org/r/20241016014730.339369-1-ying.huang@intel.com
Link: https://lore.kernel.org/lkml/20240922225041.603186-1-linux@roeck-us.net/
Link: https://lkml.kernel.org/r/20241015051554.294734-1-ying.huang@intel.com
Fixes: 99185c10d5d9 ("resource, kunit: add test case for region_intersects()")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Nathan Chancellor <nathan@kernel.org> # build
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Cameron <jonathan.cameron@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-28 21:40:39 -07:00
Mark Brown
bcc9d04e74 mm: Introduce ARCH_HAS_USER_SHADOW_STACK
Since multiple architectures have support for shadow stacks and we need to
select support for this feature in several places in the generic code
provide a generic config option that the architectures can select.

Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Deepak Gupta <debug@rivosinc.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Tested-by: Kees Cook <kees@kernel.org>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-1-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-10-04 12:04:32 +01:00
Guenter Roeck
a334407810 mm: make SPLIT_PTE_PTLOCKS depend on SMP
SPLIT_PTE_PTLOCKS depends on "NR_CPUS >= 4".  Unfortunately, that
evaluates to true if there is no NR_CPUS configuration option.  This
results in CONFIG_SPLIT_PTE_PTLOCKS=y for mac_defconfig.  This in turn
causes the m68k "q800" and "virt" machines to crash in qemu if debugging
options are enabled.

Making CONFIG_SPLIT_PTE_PTLOCKS dependent on the existence of NR_CPUS does
not work since a dependency on the existence of a numeric Kconfig entry
always evaluates to false.  Example:

config HAVE_NO_NR_CPUS
       def_bool y
       depends on !NR_CPUS

After adding this to a Kconfig file, "make defconfig" includes:
$ grep NR_CPUS .config
CONFIG_NR_CPUS=64
CONFIG_HAVE_NO_NR_CPUS=y

Defining NR_CPUS for m68k does not help either since many architectures
define NR_CPUS only for SMP configurations.

Make SPLIT_PTE_PTLOCKS depend on SMP instead to solve the problem.

Link: https://lkml.kernel.org/r/20240924154205.1491376-1-linux@roeck-us.net
Fixes: 394290cba966 ("mm: turn USE_SPLIT_PTE_PTLOCKS / USE_SPLIT_PTE_PTLOCKS into Kconfig options")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-26 14:01:43 -07:00
Yosry Ahmed
7a2369b74a mm: z3fold: deprecate CONFIG_Z3FOLD
The z3fold compressed pages allocator is rarely used, most users use
zsmalloc.  The only disadvantage of zsmalloc in comparison is the
dependency on MMU, and zbud is a more common option for !MMU as it was the
default zswap allocator for a long time.

Historically, zsmalloc had worse latency than zbud and z3fold but offered
better memory savings.  This is no longer the case as shown by a simple
recent analysis [1].  That analysis showed that z3fold does not have any
advantage over zsmalloc or zbud considering both performance and memory
usage.  In a kernel build test on tmpfs in a limited cgroup, z3fold took
3% more time and used 1.8% more memory.  The latency of zswap_load() was
7% higher, and that of zswap_store() was 10% higher.  Zsmalloc is better
in all metrics.

Moreover, z3fold apparently has latent bugs, which was made noticeable by
a recent soft lockup bug report with z3fold [2].  Switching to zsmalloc
not only fixed the problem, but also reduced the swap usage from 6~8G to
1~2G.  Other users have also reported being bitten by mistakenly enabling
z3fold.

Other than hurting users, z3fold is repeatedly causing wasted engineering
effort.  Apart from investigating the above bug, it came up in multiple
development discussions (e.g.  [3]) as something we need to handle, when
there aren't any legit users (at least not intentionally).

The natural course of action is to deprecate z3fold, and remove in a few
cycles if no objections are raised from active users.  Next on the list
should be zbud, as it offers marginal latency gains at the cost of huge
memory waste when compared to zsmalloc.  That one will need to wait until
zsmalloc does not depend on MMU.

Rename the user-visible config option from CONFIG_Z3FOLD to
CONFIG_Z3FOLD_DEPRECATED so that users with CONFIG_Z3FOLD=y get a new
prompt with explanation during make oldconfig.  Also, remove
CONFIG_Z3FOLD=y from defconfigs.

[1]https://lore.kernel.org/lkml/CAJD7tkbRF6od-2x_L8-A1QL3=2Ww13sCj4S3i4bNndqF+3+_Vg@mail.gmail.com/
[2]https://lore.kernel.org/lkml/EF0ABD3E-A239-4111-A8AB-5C442E759CF3@gmail.com/
[3]https://lore.kernel.org/lkml/CAJD7tkbnmeVugfunffSovJf9FAgy9rhBVt_tx=nxUveLUfqVsA@mail.gmail.com/

[arnd@arndb.de: deprecate ZSWAP_ZPOOL_DEFAULT_Z3FOLD as well]
  Link: https://lkml.kernel.org/r/20240909202625.1054880-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20240904233343.933462-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vitaly Wool <vitaly.wool@konsulko.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17 01:07:00 -07:00
Peter Xu
6857be5fec mm: introduce ARCH_SUPPORTS_HUGE_PFNMAP and special bits to pmd/pud
Patch series "mm: Support huge pfnmaps", v2.

Overview
========

This series implements huge pfnmaps support for mm in general.  Huge
pfnmap allows e.g.  VM_PFNMAP vmas to map in either PMD or PUD levels,
similar to what we do with dax / thp / hugetlb so far to benefit from TLB
hits.  Now we extend that idea to PFN mappings, e.g.  PCI MMIO bars where
it can grow as large as 8GB or even bigger.

Currently, only x86_64 (1G+2M) and arm64 (2M) are supported.  The last
patch (from Alex Williamson) will be the first user of huge pfnmap, so as
to enable vfio-pci driver to fault in huge pfn mappings.

Implementation
==============

In reality, it's relatively simple to add such support comparing to many
other types of mappings, because of PFNMAP's specialties when there's no
vmemmap backing it, so that most of the kernel routines on huge mappings
should simply already fail for them, like GUPs or old-school follow_page()
(which is recently rewritten to be folio_walk* APIs by David).

One trick here is that we're still unmature on PUDs in generic paths here
and there, as DAX is so far the only user.  This patchset will add the 2nd
user of it.  Hugetlb can be a 3rd user if the hugetlb unification work can
go on smoothly, but to be discussed later.

The other trick is how to allow gup-fast working for such huge mappings
even if there's no direct sign of knowing whether it's a normal page or
MMIO mapping.  This series chose to keep the pte_special solution, so that
it reuses similar idea on setting a special bit to pfnmap PMDs/PUDs so
that gup-fast will be able to identify them and fail properly.

Along the way, we'll also notice that the major pgtable pfn walker, aka,
follow_pte(), will need to retire soon due to the fact that it only works
with ptes.  A new set of simple API is introduced (follow_pfnmap* API) to
be able to do whatever follow_pte() can already do, plus that it can also
process huge pfnmaps now.  Half of this series is about that and
converting all existing pfnmap walkers to use the new API properly. 
Hopefully the new API also looks better to avoid exposing e.g.  pgtable
lock details into the callers, so that it can be used in an even more
straightforward way.

Here, three more options will be introduced and involved in huge pfnmap:

  - ARCH_SUPPORTS_HUGE_PFNMAP

    Arch developers will need to select this option when huge pfnmap is
    supported in arch's Kconfig.  After this patchset applied, both x86_64
    and arm64 will start to enable it by default.

  - ARCH_SUPPORTS_PMD_PFNMAP / ARCH_SUPPORTS_PUD_PFNMAP

    These options are for driver developers to identify whether current
    arch / config supports huge pfnmaps, making decision on whether it can
    use the huge pfnmap APIs to inject them.  One can refer to the last
    vfio-pci patch from Alex on the use of them properly in a device
    driver.

So after the whole set applied, and if one would enable some dynamic debug
lines in vfio-pci core files, we should observe things like:

  vfio-pci 0000:00:06.0: vfio_pci_mmap_huge_fault(,order = 9) BAR 0 page offset 0x0: 0x100
  vfio-pci 0000:00:06.0: vfio_pci_mmap_huge_fault(,order = 9) BAR 0 page offset 0x200: 0x100
  vfio-pci 0000:00:06.0: vfio_pci_mmap_huge_fault(,order = 9) BAR 0 page offset 0x400: 0x100

In this specific case, it says that vfio-pci faults in PMDs properly for a
few BAR0 offsets.

Patch Layout
============

Patch 1:         Introduce the new options mentioned above for huge PFNMAPs
Patch 2:         A tiny cleanup
Patch 3-8:       Preparation patches for huge pfnmap (include introduce
                 special bit for pmd/pud)
Patch 9-16:      Introduce follow_pfnmap*() API, use it everywhere, and
                 then drop follow_pte() API
Patch 17:        Add huge pfnmap support for x86_64
Patch 18:        Add huge pfnmap support for arm64
Patch 19:        Add vfio-pci support for all kinds of huge pfnmaps (Alex)

TODO
====

More architectures / More page sizes
------------------------------------

Currently only x86_64 (2M+1G) and arm64 (2M) are supported.  There seems
to have plan to support arm64 1G later on top of this series [2].

Any arch will need to first support THP / THP_1G, then provide a special
bit in pmds/puds to support huge pfnmaps.

remap_pfn_range() support
-------------------------

Currently, remap_pfn_range() still only maps PTEs.  With the new option,
remap_pfn_range() can logically start to inject either PMDs or PUDs when
the alignment requirements match on the VAs.

When the support is there, it should be able to silently benefit all
drivers that is using remap_pfn_range() in its mmap() handler on better
TLB hit rate and overall faster MMIO accesses similar to processor on
hugepages.

More driver support
-------------------

VFIO is so far the only consumer for the huge pfnmaps after this series
applied.  Besides above remap_pfn_range() generic optimization, device
driver can also try to optimize its mmap() on a better VA alignment for
either PMD/PUD sizes.  This may, iiuc, normally require userspace changes,
as the driver doesn't normally decide the VA to map a bar.  But I don't
think I know all the drivers to know the full picture.

Credits all go to Alex on help testing the GPU/NIC use cases above.

[0] https://lore.kernel.org/r/73ad9540-3fb8-4154-9a4f-30a0a2b03d41@lucifer.local
[1] https://lore.kernel.org/r/20240807194812.819412-1-peterx@redhat.com
[2] https://lore.kernel.org/r/498e0731-81a4-4f75-95b4-a8ad0bcc7665@huawei.com


This patch (of 19):

This patch introduces the option to introduce special pte bit into
pmd/puds.  Archs can start to define pmd_special / pud_special when
supported by selecting the new option.  Per-arch support will be added
later.

Before that, create fallbacks for these helpers so that they are always
available.

Link: https://lkml.kernel.org/r/20240826204353.2228736-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240826204353.2228736-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17 01:06:58 -07:00
Sergey Senozhatsky
5ad7a998ba mm: Kconfig: fixup zsmalloc configuration
zsmalloc is not exclusive to zswap.  Commit b3fbd58fcbb1 ("mm: Kconfig:
simplify zswap configuration") made CONFIG_ZSMALLOC only visible when
CONFIG_ZSWAP is selected, which makes it impossible to menuconfig
zsmalloc-specific features (stats, chain-size, etc.) on systems that use
ZRAM but don't have ZSWAP enabled.

Make zsmalloc depend on both ZRAM and ZSWAP.

Link: https://lkml.kernel.org/r/20240903040143.1580705-1-senozhatsky@chromium.org
Fixes: b3fbd58fcbb1 ("mm: Kconfig: simplify zswap configuration") 
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09 16:39:12 -07:00
Matthew Wilcox (Oracle)
7a87225ae2 x86: remove PG_uncached
Convert x86 to use PG_arch_2 instead of PG_uncached and remove
PG_uncached.

Link: https://lkml.kernel.org/r/20240821193445.2294269-11-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:46 -07:00
Matthew Wilcox (Oracle)
04cb7502a5 zsmalloc: use all available 24 bits of page_type
Now that we have an extra 8 bits, we don't need to limit ourselves to
supporting a 64KiB page size.  I'm sure both Hexagon users are grateful,
but it does reduce complexity a little.  We can also remove
reset_first_obj_offset() as calling __ClearPageZsmalloc() will now reset
all 32 bits of page_type.

Link: https://lkml.kernel.org/r/20240821173914.2270383-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:43 -07:00
Mike Rapoport (Microsoft)
b0c4e27c68 mm: introduce numa_emulation
Move numa_emulation code from arch/x86 to mm/numa_emulation.c

This code will be later reused by arch_numa.

No functional changes.

Link: https://lkml.kernel.org/r/20240807064110.1003856-20-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:31 -07:00
Mike Rapoport (Microsoft)
8748270821 mm: introduce numa_memblks
Move code dealing with numa_memblks from arch/x86 to mm/ and add Kconfig
options to let x86 select it in its Kconfig.

This code will be later reused by arch_numa.

No functional changes.

Link: https://lkml.kernel.org/r/20240807064110.1003856-18-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Tested-by: Zi Yan <ziy@nvidia.com> # for x86_64 and arm64
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> [arm64 + CXL via QEMU]
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Rob Herring (Arm) <robh@kernel.org>
Cc: Samuel Holland <samuel.holland@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:30 -07:00
David Hildenbrand
394290cba9 mm: turn USE_SPLIT_PTE_PTLOCKS / USE_SPLIT_PTE_PTLOCKS into Kconfig options
Patch series "mm: split PTE/PMD PT table Kconfig cleanups+clarifications".

This series is a follow up to the fixes:
	"[PATCH v1 0/2] mm/hugetlb: fix hugetlb vs. core-mm PT locking"

When working on the fixes, I wondered why 8xx is fine (-> never uses split
PT locks) and how PT locking even works properly with PMD page table
sharing (-> always requires split PMD PT locks).

Let's improve the split PT lock detection, make hugetlb properly depend on
it and make 8xx bail out if it would ever get enabled by accident.

As an alternative to patch #3 we could extend the Kconfig
SPLIT_PTE_PTLOCKS option from patch #2 -- but enforcing it closer to the
code that actually implements it feels a bit nicer for documentation
purposes, and there is no need to actually disable it because it should
always be disabled (!SMP).

Did a bunch of cross-compilations to make sure that split PTE/PMD PT locks
are still getting used where we would expect them.

[1] https://lkml.kernel.org/r/20240725183955.2268884-1-david@redhat.com


This patch (of 3):

Let's clean that up a bit and prepare for depending on
CONFIG_SPLIT_PMD_PTLOCKS in other Kconfig options.

More cleanups would be reasonable (like the arch-specific "depends on" for
CONFIG_SPLIT_PTE_PTLOCKS), but we'll leave that for another day.

Link: https://lkml.kernel.org/r/20240726150728.3159964-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240726150728.3159964-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:51 -07:00
Linus Torvalds
fbc90c042c - 875fa64577da ("mm/hugetlb_vmemmap: fix race with speculative PFN
walkers") is known to cause a performance regression
   (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
   Yu has a fix which I'll send along later via the hotfixes branch.
 
 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.
 
 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that.  This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches.  My bad.
 
 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"
 
 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability of
   cgroup writeback"
 
 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache index".
 
 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of the
   zeropage in MAP_SHARED mappings.  I don't see any runtime effects here -
   more a cleanup/understandability/maintainablity thing.
 
 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
   higher addresses, for aarch64.  The (poorly named) series is
   "Restructure va_high_addr_switch".
 
 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".
 
 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
   series "Enhance soft hwpoison handling and injection".
 
 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything.  Some landed in this pull.
 
 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
   simplified migration's use of hardware-offload memory copying.
 
 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".
 
 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code.  This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.
 
 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.
 
 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP.  By default this
   is a no-op - users must opt in vis sysfs controls.  Dramatic
   improvements in pagefault latency are realized.
 
 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".
 
 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".
 
 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".
 
 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".
 
 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances.  A 10x speedup is seen in a microbenchmark.
 
   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.
 
 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".
 
 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.
 
 - Is anyone reading this stuff?  If so, email me!
 
 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.
 
 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".
 
 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.
 
 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".
 
 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE".  It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.
 
 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.
 
 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large folio
   userspace copying.
 
 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers.  From SeongJae Park.
 
 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.
 
 - David Hildenbrand sends along more cleanups, this time against the
   migration code.  The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".
 
 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code.  He addresses this in the series "mm: Fix various
   readahead quirks".
 
 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's self
   testing code.
 
 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code.  The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this.  The series is marked cc:stable.
 
 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.
 
 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion.  The series (which also makes the memcg-v1 code
   Kconfigurable) are
 
   "mm: memcg: separate legacy cgroup v1 code and put under config
   option" and
   "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
 
 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.
 
 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of excessive
   correctable memory errors.  In order to permit userspace to monitor and
   handle this situation.
 
 - Kefeng Wang's series "mm: migrate: support poison recover from migrate
   folio" teaches the kernel to appropriately handle migration from
   poisoned source folios rather than simply panicing.
 
 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.
 
 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory utilization.
 
 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
   refcount increments.  So these paes can first be moved aside if they
   reside in the movable zone or a CMA block.
 
 - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
   for much faster reading of vma information.  The series is "query VMAs
   from /proc/<pid>/maps".
 
 - In the series "mm: introduce per-order mTHP split counters" Lance Yang
   improves the kernel's presentation of developer information related to
   multisize THP splitting.
 
 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)".  This permits
   userspace to use all available huge page sizes.
 
 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and not
   very useful feature from slab fault injection.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
 joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
 =z0Lf
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.

 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that. This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches. My
   bad.

 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"

 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability
   of cgroup writeback"

 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache
   index".

 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of
   the zeropage in MAP_SHARED mappings. I don't see any runtime effects
   here - more a cleanup/understandability/maintainablity thing.

 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
   of higher addresses, for aarch64. The (poorly named) series is
   "Restructure va_high_addr_switch".

 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".

 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
   the series "Enhance soft hwpoison handling and injection".

 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything. Some landed in this pull.

 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
   has simplified migration's use of hardware-offload memory copying.

 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".

 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code. This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.

 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.

 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP. By default this
   is a no-op - users must opt in vis sysfs controls. Dramatic
   improvements in pagefault latency are realized.

 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".

 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".

 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".

 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".

 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances. A 10x speedup is seen in a microbenchmark.

   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.

 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".

 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.

 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.

 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".

 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.

 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".

 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.

 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.

 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large
   folio userspace copying.

 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers. From SeongJae Park.

 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.

 - David Hildenbrand sends along more cleanups, this time against the
   migration code. The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".

 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code. He addresses this in the series "mm: Fix various
   readahead quirks".

 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's
   self testing code.

 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code. The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this. The series is marked cc:stable.

 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.

 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion. The series (which also makes the memcg-v1 code
   Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
   under config option" and "mm: memcg: put cgroup v1-specific memcg
   data under CONFIG_MEMCG_V1"

 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.

 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of
   excessive correctable memory errors. In order to permit userspace to
   monitor and handle this situation.

 - Kefeng Wang's series "mm: migrate: support poison recover from
   migrate folio" teaches the kernel to appropriately handle migration
   from poisoned source folios rather than simply panicing.

 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.

 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory
   utilization.

 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than
   bare refcount increments. So these paes can first be moved aside if
   they reside in the movable zone or a CMA block.

 - Andrii Nakryiko has added a binary ioctl()-based API to
   /proc/pid/maps for much faster reading of vma information. The series
   is "query VMAs from /proc/<pid>/maps".

 - In the series "mm: introduce per-order mTHP split counters" Lance
   Yang improves the kernel's presentation of developer information
   related to multisize THP splitting.

 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)". This permits
   userspace to use all available huge page sizes.

 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and
   not very useful feature from slab fault injection.

* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
  mm/mglru: fix ineffective protection calculation
  mm/zswap: fix a white space issue
  mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
  mm/hugetlb: fix possible recursive locking detected warning
  mm/gup: clear the LRU flag of a page before adding to LRU batch
  mm/numa_balancing: teach mpol_to_str about the balancing mode
  mm: memcg1: convert charge move flags to unsigned long long
  alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
  lib: reuse page_ext_data() to obtain codetag_ref
  lib: add missing newline character in the warning message
  mm/mglru: fix overshooting shrinker memory
  mm/mglru: fix div-by-zero in vmpressure_calc_level()
  mm/kmemleak: replace strncpy() with strscpy()
  mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
  mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
  mm: ignore data-race in __swap_writepage
  hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
  mm: shmem: rename mTHP shmem counters
  mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
  mm/migrate: putback split folios when numa hint migration fails
  ...
2024-07-21 17:15:46 -07:00
Christophe Leroy
8268614b40 mm: remove CONFIG_ARCH_HAS_HUGEPD
powerpc was the only user of CONFIG_ARCH_HAS_HUGEPD and doesn't use it
anymore, so remove all related code.

Link: https://lkml.kernel.org/r/4b10c54c794780b955f3ad6c657d0199dd792146.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-12 15:52:19 -07:00
Ilya Leoshkevich
854fa98d1d kmsan: disable KMSAN when DEFERRED_STRUCT_PAGE_INIT is enabled
KMSAN relies on memblock returning all available pages to it (see
kmsan_memblock_free_pages()).  It partitions these pages into 3
categories: pages available to the buddy allocator, shadow pages and
origin pages.  This partitioning is static.

If new pages appear after kmsan_init_runtime(), it is considered an error.
DEFERRED_STRUCT_PAGE_INIT causes this, so mark it as incompatible with
KMSAN.

Link: https://lkml.kernel.org/r/20240621113706.315500-4-iii@linux.ibm.com
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <kasan-dev@googlegroups.com>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:21 -07:00
Javier Martinez Canillas
34f7c5288a mm/Kconfig: mention arm64 in DEFAULT_MMAP_MIN_ADDR symbol help text
Currently ppc64 and x86 are mentioned as architectures where a 65536 value
is reasonable but arm64 isn't listed and it is also a 64-bit architecture.

The help text says that for "arm" the value should be no higher than 32768
but it's only talking about 32-bit ARM.  Adding arm64 to the above list
can make this more clear and avoid confusing users who may think that the
32k limit would also apply to 64-bit ARM.

Link: https://lkml.kernel.org/r/20240619083047.114613-1-javierm@redhat.com
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Cc: Brian Masney <bmasney@redhat.com>
Cc: Javier Martinez Canillas <javierm@redhat.com>
Cc: Maxime Ripard <mripard@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:19 -07:00
David Hildenbrand
43d746dc49 mm/zsmalloc: use a proper page type
Let's clean it up: use a proper page type and store our data (offset into
a page) in the lower 16 bit as documented.

We won't be able to support 256 KiB base pages, which is acceptable. 
Teach Kconfig to handle that cleanly using a new CONFIG_HAVE_ZSMALLOC.

Based on this, we should do a proper "struct zsdesc" conversion, as
proposed in [1].

This removes the last _mapcount/page_type offender.

[1] https://lore.kernel.org/all/20231130101242.2590384-1-42.hyeyoo@gmail.com/

Link: https://lkml.kernel.org/r/20240529111904.2069608-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org>	[zram/zsmalloc workloads]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:16 -07:00
Kees Cook
67f2df3b82 mm/slab: Plumb kmem_buckets into __do_kmalloc_node()
Introduce CONFIG_SLAB_BUCKETS which provides the infrastructure to
support separated kmalloc buckets (in the following kmem_buckets_create()
patches and future codetag-based separation). Since this will provide
a mitigation for a very common case of exploits, it is recommended to
enable this feature for general purpose distros. By default, the new
Kconfig will be enabled if CONFIG_SLAB_FREELIST_HARDENED is enabled (and
it is added to the hardening.config Kconfig fragment).

To be able to choose which buckets to allocate from, make the buckets
available to the internal kmalloc interfaces by adding them as the
second argument, rather than depending on the buckets being chosen from
the fixed set of global buckets. Where the bucket is not available,
pass NULL, which means "use the default system kmalloc bucket set"
(the prior existing behavior), as implemented in kmalloc_slab().

To avoid adding the extra argument when !CONFIG_SLAB_BUCKETS, only the
top-level macros and static inlines use the buckets argument (where
they are stripped out and compiled out respectively). The actual extern
functions can then be built without the argument, and the internals
fall back to the global kmalloc buckets unconditionally.

Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-03 12:24:19 +02:00
Linus Torvalds
61307b7be4 The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.  Notable
 series include:
 
 - Lucas Stach has provided some page-mapping
   cleanup/consolidation/maintainability work in the series "mm/treewide:
   Remove pXd_huge() API".
 
 - In the series "Allow migrate on protnone reference with
   MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
   MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
   test.
 
 - In their series "Memory allocation profiling" Kent Overstreet and
   Suren Baghdasaryan have contributed a means of determining (via
   /proc/allocinfo) whereabouts in the kernel memory is being allocated:
   number of calls and amount of memory.
 
 - Matthew Wilcox has provided the series "Various significant MM
   patches" which does a number of rather unrelated things, but in largely
   similar code sites.
 
 - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
   Weiner has fixed the page allocator's handling of migratetype requests,
   with resulting improvements in compaction efficiency.
 
 - In the series "make the hugetlb migration strategy consistent" Baolin
   Wang has fixed a hugetlb migration issue, which should improve hugetlb
   allocation reliability.
 
 - Liu Shixin has hit an I/O meltdown caused by readahead in a
   memory-tight memcg.  Addressed in the series "Fix I/O high when memory
   almost met memcg limit".
 
 - In the series "mm/filemap: optimize folio adding and splitting" Kairui
   Song has optimized pagecache insertion, yielding ~10% performance
   improvement in one test.
 
 - Baoquan He has cleaned up and consolidated the early zone
   initialization code in the series "mm/mm_init.c: refactor
   free_area_init_core()".
 
 - Baoquan has also redone some MM initializatio code in the series
   "mm/init: minor clean up and improvement".
 
 - MM helper cleanups from Christoph Hellwig in his series "remove
   follow_pfn".
 
 - More cleanups from Matthew Wilcox in the series "Various page->flags
   cleanups".
 
 - Vlastimil Babka has contributed maintainability improvements in the
   series "memcg_kmem hooks refactoring".
 
 - More folio conversions and cleanups in Matthew Wilcox's series
 
 	"Convert huge_zero_page to huge_zero_folio"
 	"khugepaged folio conversions"
 	"Remove page_idle and page_young wrappers"
 	"Use folio APIs in procfs"
 	"Clean up __folio_put()"
 	"Some cleanups for memory-failure"
 	"Remove page_mapping()"
 	"More folio compat code removal"
 
 - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
   functions to work on folis".
 
 - Code consolidation and cleanup work related to GUP's handling of
   hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
 
 - Rick Edgecombe has developed some fixes to stack guard gaps in the
   series "Cover a guard gap corner case".
 
 - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
   "mm/ksm: fix ksm exec support for prctl".
 
 - Baolin Wang has implemented NUMA balancing for multi-size THPs.  This
   is a simple first-cut implementation for now.  The series is "support
   multi-size THP numa balancing".
 
 - Cleanups to vma handling helper functions from Matthew Wilcox in the
   series "Unify vma_address and vma_pgoff_address".
 
 - Some selftests maintenance work from Dev Jain in the series
   "selftests/mm: mremap_test: Optimizations and style fixes".
 
 - Improvements to the swapping of multi-size THPs from Ryan Roberts in
   the series "Swap-out mTHP without splitting".
 
 - Kefeng Wang has significantly optimized the handling of arm64's
   permission page faults in the series
 
 	"arch/mm/fault: accelerate pagefault when badaccess"
 	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
 
 - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
   GUP-fast".
 
 - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
   use struct vm_fault".
 
 - selftests build fixes from John Hubbard in the series "Fix
   selftests/mm build without requiring "make headers"".
 
 - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
   series "Improved Memory Tier Creation for CPUless NUMA Nodes".  Fixes
   the initialization code so that migration between different memory types
   works as intended.
 
 - David Hildenbrand has improved follow_pte() and fixed an errant driver
   in the series "mm: follow_pte() improvements and acrn follow_pte()
   fixes".
 
 - David also did some cleanup work on large folio mapcounts in his
   series "mm: mapcount for large folios + page_mapcount() cleanups".
 
 - Folio conversions in KSM in Alex Shi's series "transfer page to folio
   in KSM".
 
 - Barry Song has added some sysfs stats for monitoring multi-size THP's
   in the series "mm: add per-order mTHP alloc and swpout counters".
 
 - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
   and limit checking cleanups".
 
 - Matthew Wilcox has been looking at buffer_head code and found the
   documentation to be lacking.  The series is "Improve buffer head
   documentation".
 
 - Multi-size THPs get more work, this time from Lance Yang.  His series
   "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
   the freeing of these things.
 
 - Kemeng Shi has added more userspace-visible writeback instrumentation
   in the series "Improve visibility of writeback".
 
 - Kemeng Shi then sent some maintenance work on top in the series "Fix
   and cleanups to page-writeback".
 
 - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
   series "Improve anon_vma scalability for anon VMAs".  Intel's test bot
   reported an improbable 3x improvement in one test.
 
 - SeongJae Park adds some DAMON feature work in the series
 
 	"mm/damon: add a DAMOS filter type for page granularity access recheck"
 	"selftests/damon: add DAMOS quota goal test"
 
 - Also some maintenance work in the series
 
 	"mm/damon/paddr: simplify page level access re-check for pageout"
 	"mm/damon: misc fixes and improvements"
 
 - David Hildenbrand has disabled some known-to-fail selftests ni the
   series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
 
 - memcg metadata storage optimizations from Shakeel Butt in "memcg:
   reduce memory consumption by memcg stats".
 
 - DAX fixes and maintenance work from Vishal Verma in the series
   "dax/bus.c: Fixups for dax-bus locking".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
 jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
 nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
 =V3R/
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull mm updates from Andrew Morton:
 "The usual shower of singleton fixes and minor series all over MM,
  documented (hopefully adequately) in the respective changelogs.
  Notable series include:

   - Lucas Stach has provided some page-mapping cleanup/consolidation/
     maintainability work in the series "mm/treewide: Remove pXd_huge()
     API".

   - In the series "Allow migrate on protnone reference with
     MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
     MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
     one test.

   - In their series "Memory allocation profiling" Kent Overstreet and
     Suren Baghdasaryan have contributed a means of determining (via
     /proc/allocinfo) whereabouts in the kernel memory is being
     allocated: number of calls and amount of memory.

   - Matthew Wilcox has provided the series "Various significant MM
     patches" which does a number of rather unrelated things, but in
     largely similar code sites.

   - In his series "mm: page_alloc: freelist migratetype hygiene"
     Johannes Weiner has fixed the page allocator's handling of
     migratetype requests, with resulting improvements in compaction
     efficiency.

   - In the series "make the hugetlb migration strategy consistent"
     Baolin Wang has fixed a hugetlb migration issue, which should
     improve hugetlb allocation reliability.

   - Liu Shixin has hit an I/O meltdown caused by readahead in a
     memory-tight memcg. Addressed in the series "Fix I/O high when
     memory almost met memcg limit".

   - In the series "mm/filemap: optimize folio adding and splitting"
     Kairui Song has optimized pagecache insertion, yielding ~10%
     performance improvement in one test.

   - Baoquan He has cleaned up and consolidated the early zone
     initialization code in the series "mm/mm_init.c: refactor
     free_area_init_core()".

   - Baoquan has also redone some MM initializatio code in the series
     "mm/init: minor clean up and improvement".

   - MM helper cleanups from Christoph Hellwig in his series "remove
     follow_pfn".

   - More cleanups from Matthew Wilcox in the series "Various
     page->flags cleanups".

   - Vlastimil Babka has contributed maintainability improvements in the
     series "memcg_kmem hooks refactoring".

   - More folio conversions and cleanups in Matthew Wilcox's series:
	"Convert huge_zero_page to huge_zero_folio"
	"khugepaged folio conversions"
	"Remove page_idle and page_young wrappers"
	"Use folio APIs in procfs"
	"Clean up __folio_put()"
	"Some cleanups for memory-failure"
	"Remove page_mapping()"
	"More folio compat code removal"

   - David Hildenbrand chipped in with "fs/proc/task_mmu: convert
     hugetlb functions to work on folis".

   - Code consolidation and cleanup work related to GUP's handling of
     hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".

   - Rick Edgecombe has developed some fixes to stack guard gaps in the
     series "Cover a guard gap corner case".

   - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
     series "mm/ksm: fix ksm exec support for prctl".

   - Baolin Wang has implemented NUMA balancing for multi-size THPs.
     This is a simple first-cut implementation for now. The series is
     "support multi-size THP numa balancing".

   - Cleanups to vma handling helper functions from Matthew Wilcox in
     the series "Unify vma_address and vma_pgoff_address".

   - Some selftests maintenance work from Dev Jain in the series
     "selftests/mm: mremap_test: Optimizations and style fixes".

   - Improvements to the swapping of multi-size THPs from Ryan Roberts
     in the series "Swap-out mTHP without splitting".

   - Kefeng Wang has significantly optimized the handling of arm64's
     permission page faults in the series
	"arch/mm/fault: accelerate pagefault when badaccess"
	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"

   - GUP cleanups from David Hildenbrand in "mm/gup: consistently call
     it GUP-fast".

   - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
     path to use struct vm_fault".

   - selftests build fixes from John Hubbard in the series "Fix
     selftests/mm build without requiring "make headers"".

   - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
     series "Improved Memory Tier Creation for CPUless NUMA Nodes".
     Fixes the initialization code so that migration between different
     memory types works as intended.

   - David Hildenbrand has improved follow_pte() and fixed an errant
     driver in the series "mm: follow_pte() improvements and acrn
     follow_pte() fixes".

   - David also did some cleanup work on large folio mapcounts in his
     series "mm: mapcount for large folios + page_mapcount() cleanups".

   - Folio conversions in KSM in Alex Shi's series "transfer page to
     folio in KSM".

   - Barry Song has added some sysfs stats for monitoring multi-size
     THP's in the series "mm: add per-order mTHP alloc and swpout
     counters".

   - Some zswap cleanups from Yosry Ahmed in the series "zswap
     same-filled and limit checking cleanups".

   - Matthew Wilcox has been looking at buffer_head code and found the
     documentation to be lacking. The series is "Improve buffer head
     documentation".

   - Multi-size THPs get more work, this time from Lance Yang. His
     series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
     optimizes the freeing of these things.

   - Kemeng Shi has added more userspace-visible writeback
     instrumentation in the series "Improve visibility of writeback".

   - Kemeng Shi then sent some maintenance work on top in the series
     "Fix and cleanups to page-writeback".

   - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
     the series "Improve anon_vma scalability for anon VMAs". Intel's
     test bot reported an improbable 3x improvement in one test.

   - SeongJae Park adds some DAMON feature work in the series
	"mm/damon: add a DAMOS filter type for page granularity access recheck"
	"selftests/damon: add DAMOS quota goal test"

   - Also some maintenance work in the series
	"mm/damon/paddr: simplify page level access re-check for pageout"
	"mm/damon: misc fixes and improvements"

   - David Hildenbrand has disabled some known-to-fail selftests ni the
     series "selftests: mm: cow: flag vmsplice() hugetlb tests as
     XFAIL".

   - memcg metadata storage optimizations from Shakeel Butt in "memcg:
     reduce memory consumption by memcg stats".

   - DAX fixes and maintenance work from Vishal Verma in the series
     "dax/bus.c: Fixups for dax-bus locking""

* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
  memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
  selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
  selftests: cgroup: add tests to verify the zswap writeback path
  mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
  mm/damon/core: fix return value from damos_wmark_metric_value
  mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
  selftests: cgroup: remove redundant enabling of memory controller
  Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
  Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
  Docs/mm/damon/design: use a list for supported filters
  Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
  Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
  selftests/damon: classify tests for functionalities and regressions
  selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
  selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
  selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
  mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
  selftests/damon: add a test for DAMOS quota goal
  ...
2024-05-19 09:21:03 -07:00
Mike Rapoport (IBM)
12af2b83d0 mm: introduce execmem_alloc() and execmem_free()
module_alloc() is used everywhere as a mean to allocate memory for code.

Beside being semantically wrong, this unnecessarily ties all subsystems
that need to allocate code, such as ftrace, kprobes and BPF to modules and
puts the burden of code allocation to the modules code.

Several architectures override module_alloc() because of various
constraints where the executable memory can be located and this causes
additional obstacles for improvements of code allocation.

Start splitting code allocation from modules by introducing execmem_alloc()
and execmem_free() APIs.

Initially, execmem_alloc() is a wrapper for module_alloc() and
execmem_free() is a replacement of module_memfree() to allow updating all
call sites to use the new APIs.

Since architectures define different restrictions on placement,
permissions, alignment and other parameters for memory that can be used by
different subsystems that allocate executable memory, execmem_alloc() takes
a type argument, that will be used to identify the calling subsystem and to
allow architectures define parameters for ranges suitable for that
subsystem.

No functional changes.

Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2024-05-14 00:31:43 -07:00
David Hildenbrand
25176ad09c mm/treewide: rename CONFIG_HAVE_FAST_GUP to CONFIG_HAVE_GUP_FAST
Nowadays, we call it "GUP-fast", the external interface includes functions
like "get_user_pages_fast()", and we renamed all internal functions to
reflect that as well.

Let's make the config option reflect that.

Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:41 -07:00
Peter Xu
ac3830c3b2 mm/Kconfig: CONFIG_PGTABLE_HAS_HUGE_LEAVES
Patch series "mm/gup: Unify hugetlb, part 2", v4.

The series removes the hugetlb slow gup path after a previous refactor
work [1], so that slow gup now uses the exact same path to process all
kinds of memory including hugetlb.

For the long term, we may want to remove most, if not all, call sites of
huge_pte_offset().  It'll be ideal if that API can be completely dropped
from arch hugetlb API.  This series is one small step towards merging
hugetlb specific codes into generic mm paths.  From that POV, this series
removes one reference to huge_pte_offset() out of many others.

One goal of such a route is that we can reconsider merging hugetlb
features like High Granularity Mapping (HGM).  It was not accepted in the
past because it may add lots of hugetlb specific codes and make the mm
code even harder to maintain.  With a merged codeset, features like HGM
can hopefully share some code with THP, legacy (PMD+) or modern
(continuous PTEs).

To make it work, the generic slow gup code will need to at least
understand hugepd, which is already done like so in fast-gup.  Due to the
specialty of hugepd to be software-only solution (no hardware recognizes
the hugepd format, so it's purely artificial structures), there's chance
we can merge some or all hugepd formats with cont_pte in the future.  That
question is yet unsettled from Power side to have an acknowledgement.  As
of now for this series, I kept the hugepd handling because we may still
need to do so before getting a clearer picture of the future of hugepd. 
The other reason is simply that we did it already for fast-gup and most
codes are still around to be reused.  It'll make more sense to keep
slow/fast gup behave the same before a decision is made to remove hugepd.

There's one major difference for slow-gup on cont_pte / cont_pmd handling,
currently supported on three architectures (aarch64, riscv, ppc).  Before
the series, slow gup will be able to recognize e.g.  cont_pte entries with
the help of huge_pte_offset() when hstate is around.  Now it's gone but
still working, by looking up pgtable entries one by one.

It's not ideal, but hopefully this change should not affect yet on major
workloads.  There's some more information in the commit message of the
last patch.  If this would be a concern, we can consider teaching slow gup
to recognize cont pte/pmd entries, and that should recover the lost
performance.  But I doubt its necessity for now, so I kept it as simple as
it can be.

Patch layout
=============

Patch 1-8:    Preparation works, or cleanups in relevant code paths
Patch 9-11:   Teach slow gup with all kinds of huge entries (pXd, hugepd)
Patch 12:     Drop hugetlb_follow_page_mask()

More information can be found in the commit messages of each patch.

[1] https://lore.kernel.org/all/20230628215310.73782-1-peterx@redhat.com
[2] https://lore.kernel.org/r/20240321215047.678172-1-peterx@redhat.com




Introduce a config option that will be selected as long as huge leaves are
involved in pgtable (thp or hugetlbfs).  It would be useful to mark any
code with this new config that can process either hugetlb or thp pages in
any level that is higher than pte level.

Link: https://lkml.kernel.org/r/20240327152332.950956-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240327152332.950956-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:20 -07:00
Maíra Canal
b413f9cd4c mm: Update shuffle documentation to match its current state
Commit 839195352d82 ("mm/shuffle: remove dynamic reconfiguration")
removed the dynamic reconfiguration capabilities from the shuffle page
allocator. This means that, now, we don't have any perspective of an
"autodetection of memory-side-cache" that triggers the enablement of the
shuffle page allocator.

Therefore, let the documentation reflect that the only way to enable
the shuffle page allocator is by setting `page_alloc.shuffle=1`.

Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20240422142007.1062231-1-mcanal@igalia.com
2024-04-24 13:05:01 -06:00
Linus Torvalds
1d35aae78f Kbuild updates for v6.9
- Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)
 
  - Use more threads when building Debian packages in parallel
 
  - Fix warnings shown during the RPM kernel package uninstallation
 
  - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
    Makefile
 
  - Support GCC's -fmin-function-alignment flag
 
  - Fix a null pointer dereference bug in modpost
 
  - Add the DTB support to the RPM package
 
  - Various fixes and cleanups in Kconfig
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmX8HGIVHG1hc2FoaXJv
 eUBrZXJuZWwub3JnAAoJED2LAQed4NsGYfIQAIl/zEFoNVSHGR4TIvO7SIwkT4MM
 VAm0W6XRFaXfIGw8HL/MXe+U9jAyeQ9yL9uUVv8PqFTO+LzBbW1X1X97tlmrlQsC
 7mdxbA1KJXwkwt4wH/8/EZQMwHr327vtVH4AilSm+gAaWMXaSKAye3ulKQQ2gevz
 vP6aOcfbHIWOPdxA53cLdSl9LOGrYNczKySHXKV9O39T81F+ko7wPpdkiMWw5LWG
 ISRCV8bdXli8j10Pmg8jlbevSKl4Z5FG2BVw/Cl8rQ5tBBoCzFsUPnnp9A29G8QP
 OqRhbwxtkSm67BMJAYdHnhjp/l0AOEbmetTGpna+R06hirOuXhR3vc6YXZxhQjff
 LmKaqfG5YchRALS1fNDsRUNIkQxVJade+tOUG+V4WbxHQKWX7Ghu5EDlt2/x7P0p
 +XLPE48HoNQLQOJ+pgIOkaEDl7WLfGhoEtEgprZBuEP2h39xcdbYJyF10ZAAR4UZ
 FF6J9lDHbf7v1uqD2YnAQJQ6jJ06CvN6/s6SdiJnCWSs5cYRW0fnYigSIuwAgGHZ
 c/QFECoGEflXGGuqZDl5iXiIjhWKzH2nADSVEs7maP47vapcMWb9gA7VBNoOr5M0
 IXuFo1khChF4V2pxqlDj3H5TkDlFENYT/Wjh+vvjx8XplKCRKaSh+LaZ39hja61V
 dWH7BPecS44h4KXx
 =tFdl
 -----END PGP SIGNATURE-----

Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kbuild updates from Masahiro Yamada:

 - Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)

 - Use more threads when building Debian packages in parallel

 - Fix warnings shown during the RPM kernel package uninstallation

 - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
   Makefile

 - Support GCC's -fmin-function-alignment flag

 - Fix a null pointer dereference bug in modpost

 - Add the DTB support to the RPM package

 - Various fixes and cleanups in Kconfig

* tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (67 commits)
  kconfig: tests: test dependency after shuffling choices
  kconfig: tests: add a test for randconfig with dependent choices
  kconfig: tests: support KCONFIG_SEED for the randconfig runner
  kbuild: rpm-pkg: add dtb files in kernel rpm
  kconfig: remove unneeded menu_is_visible() call in conf_write_defconfig()
  kconfig: check prompt for choice while parsing
  kconfig: lxdialog: remove unused dialog colors
  kconfig: lxdialog: fix button color for blackbg theme
  modpost: fix null pointer dereference
  kbuild: remove GCC's default -Wpacked-bitfield-compat flag
  kbuild: unexport abs_srctree and abs_objtree
  kbuild: Move -Wenum-{compare-conditional,enum-conversion} into W=1
  kconfig: remove named choice support
  kconfig: use linked list in get_symbol_str() to iterate over menus
  kconfig: link menus to a symbol
  kbuild: fix inconsistent indentation in top Makefile
  kbuild: Use -fmin-function-alignment when available
  alpha: merge two entries for CONFIG_ALPHA_GAMMA
  alpha: merge two entries for CONFIG_ALPHA_EV4
  kbuild: change DTC_FLAGS_<basetarget>.o to take the path relative to $(obj)
  ...
2024-03-21 14:41:00 -07:00
Mathieu Desnoyers
8690bbcf3b Introduce cpu_dcache_is_aliasing() across all architectures
Introduce a generic way to query whether the data cache is virtually
aliased on all architectures. Its purpose is to ensure that subsystems
which are incompatible with virtually aliased data caches (e.g. FS_DAX)
can reliably query this.

For data cache aliasing, there are three scenarios dependending on the
architecture. Here is a breakdown based on my understanding:

A) The data cache is always aliasing:

* arc
* csky
* m68k (note: shared memory mappings are incoherent ? SHMLBA is missing there.)
* sh
* parisc

B) The data cache aliasing is statically known or depends on querying CPU
   state at runtime:

* arm (cache_is_vivt() || cache_is_vipt_aliasing())
* mips (cpu_has_dc_aliases)
* nios2 (NIOS2_DCACHE_SIZE > PAGE_SIZE)
* sparc32 (vac_cache_size > PAGE_SIZE)
* sparc64 (L1DCACHE_SIZE > PAGE_SIZE)
* xtensa (DCACHE_WAY_SIZE > PAGE_SIZE)

C) The data cache is never aliasing:

* alpha
* arm64 (aarch64)
* hexagon
* loongarch (but with incoherent write buffers, which are disabled since
             commit d23b7795 ("LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE"))
* microblaze
* openrisc
* powerpc
* riscv
* s390
* um
* x86

Require architectures in A) and B) to select ARCH_HAS_CPU_CACHE_ALIASING and
implement "cpu_dcache_is_aliasing()".

Architectures in C) don't select ARCH_HAS_CPU_CACHE_ALIASING, and thus
cpu_dcache_is_aliasing() simply evaluates to "false".

Note that this leaves "cpu_icache_is_aliasing()" to be implemented as future
work. This would be useful to gate features like XIP on architectures
which have aliasing CPU dcache-icache but not CPU dcache-dcache.

Use "cpu_dcache" and "cpu_cache" rather than just "dcache" and "cache"
to clarify that we really mean "CPU data cache" and "CPU cache" to
eliminate any possible confusion with VFS "dentry cache" and "page
cache".

Link: https://lore.kernel.org/lkml/20030910210416.GA24258@mail.jlokier.co.uk/
Link: https://lkml.kernel.org/r/20240215144633.96437-9-mathieu.desnoyers@efficios.com
Fixes: d92576f1167c ("dax: does not work correctly with virtual aliasing caches")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michael Sclafani <dm-devel@lists.linux.dev>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:19 -08:00
Chengming Zhou
c2e2ba7702 mm/zswap: only support zswap_exclusive_loads_enabled
The !zswap_exclusive_loads_enabled mode will leave compressed copy in
the zswap tree and lru list after the folio swapin.

There are some disadvantages in this mode:
1. It's a waste of memory since there are two copies of data, one is
   folio, the other one is compressed data in zswap. And it's unlikely
   the compressed data is useful in the near future.

2. If that folio is dirtied, the compressed data must be not useful,
   but we don't know and don't invalidate the trashy memory in zswap.

3. It's not reclaimable from zswap shrinker since zswap_writeback_entry()
   will always return -EEXIST and terminate the shrinking process.

On the other hand, the only downside of zswap_exclusive_loads_enabled
is a little more cpu usage/latency when compression, and the same if
the folio is removed from swapcache or dirtied.

More explanation by Johannes on why we should consider exclusive load
as the default for zswap:

  Caching "swapout work" is helpful when the system is thrashing. Then
  recently swapped in pages might get swapped out again very soon. It
  certainly makes sense with conventional swap, because keeping a clean
  copy on the disk saves IO work and doesn't cost any additional memory.

  But with zswap, it's different. It saves some compression work on a
  thrashing page. But the act of keeping compressed memory contributes
  to a higher rate of thrashing. And that can cause IO in other places
  like zswap writeback and file memory.

And the A/B test results of the kernel build in tmpfs with limited memory
can support this theory:

			!exclusive	exclusive
real                       63.80         63.01
user                       1063.83       1061.32
sys                        290.31        266.15

workingset_refault_anon    2383084.40    1976397.40
workingset_refault_file    44134.00      45689.40
workingset_activate_anon   837878.00     728441.20
workingset_activate_file   4710.00       4085.20
workingset_restore_anon    732622.60     639428.40
workingset_restore_file    1007.00       926.80
workingset_nodereclaim     0.00          0.00
pgscan                     14343003.40   12409570.20
pgscan_kswapd              0.00          0.00
pgscan_direct              14343003.40   12409570.20
pgscan_khugepaged          0.00          0.00

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-5-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Anshuman Khandual
73307523c9 mm/cma: make MAX_CMA_AREAS = CONFIG_CMA_AREAS
There is no real difference between the global area, and other
additionally configured CMA areas via CONFIG_CMA_AREAS that always
defaults without user input.  This makes MAX_CMA_AREAS same as
CONFIG_CMA_AREAS, also incrementing its default values, thus maintaining
current default for MAX_CMA_AREAS both for UMA and NUMA systems.

Link: https://lkml.kernel.org/r/20240205051929.298559-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:53 -08:00
Anshuman Khandual
fe58582c0e mm/cma: drop CONFIG_CMA_DEBUG
All pr_debug() prints in (mm/cma.c) could be enabled via standard Makefile
based method.  Besides cma_debug_show_areas() should always be called
during cma_alloc() failure path.  This seemingly redundant config,
CONFIG_CMA_DEBUG can be dropped without any problem.

[lukas.bulwahn@gmail.com: remove debug code to removed CONFIG_CMA_DEBUG]
  Link: https://lkml.kernel.org/r/20240207143825.986-1-lukas.bulwahn@gmail.com
Link: https://lkml.kernel.org/r/20240205031647.283510-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:53 -08:00
Masahiro Yamada
cd14b01846 treewide: replace or remove redundant def_bool in Kconfig files
'def_bool X' is a shorthand for 'bool' plus 'default X'.

'def_bool' is redundant where 'bool' is already present, so 'def_bool X'
can be replaced with 'default X', or removed if X is 'n'.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-02-20 20:47:45 +09:00
Linus Torvalds
0dde2bf67b IOMMU Updates for Linux v6.8
Including:
 
 	- Core changes:
 	  - Fix race conditions in device probe path
 	  - Retire IOMMU bus_ops
 	  - Support for passing custom allocators to page table drivers
 	  - Clean up Kconfig around IOMMU_SVA
 	  - Support for sharing SVA domains with all devices bound to
 	    a mm
 	  - Firmware data parsing cleanup
 	  - Tracing improvements for iommu-dma code
 	  - Some smaller fixes and cleanups
 
 	- ARM-SMMU drivers:
 	  - Device-tree binding updates:
 	     - Add additional compatible strings for Qualcomm SoCs
 	     - Document Adreno clocks for Qualcomm's SM8350 SoC
 	  - SMMUv2:
 	    - Implement support for the ->domain_alloc_paging() callback
 	    - Ensure Secure context is restored following suspend of Qualcomm SMMU
 	      implementation
 	  - SMMUv3:
 	    - Disable stalling mode for the "quiet" context descriptor
 	    - Minor refactoring and driver cleanups
 
 	 - Intel VT-d driver:
 	   - Cleanup and refactoring
 
 	 - AMD IOMMU driver:
 	   - Improve IO TLB invalidation logic
 	   - Small cleanups and improvements
 
 	 - Rockchip IOMMU driver:
 	   - DT binding update to add Rockchip RK3588
 
 	 - Apple DART driver:
 	   - Apple M1 USB4/Thunderbolt DART support
 	   - Cleanups
 
 	 - Virtio IOMMU driver:
 	   - Add support for iotlb_sync_map
 	   - Enable deferred IO TLB flushes
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmWecQoACgkQK/BELZcB
 GuN5ZxAAzC5QUKAzANx0puk7QhPpKKlbSvj6Q7iRgCLk00KJO1+VQh9v4ouCmXqF
 kn3Ko8gddjhtrgwN0OQ54F39cLUrp1SBemy71K5YOR+vu8VKtwtmawZGeeRZ+k+B
 Eohw58oaXTiR1maYvoLixLYczLrjklqyJOQ1vZ0GxFGxDqrFByAryHDgG/3OCpJx
 C9e6PsLbbfhfqA8Kv97iKcBqniGbXxAMuodqSUG0buQ3oZgfpIP6Bt3EgUzFGPGk
 3BTlYxowS/gkjUWd3fgjQFIFLTA01u9FhpA2Jb0a4v67pUCR64YxHN7rBQ6ZChtG
 kB9laQfU9re79RsHhqQzr0JT9x/eyq7pzGzjp5TV5TPW6IW+sqjMIPhzd9P08Ef7
 BclkCVobx0jSAHOhnnG4QJiKANr2Y2oM3HfsAJccMMY45RRhUKmVqM7jxMPfGn3A
 i+inlee73xTjZXJse1EWG1fmKKMLvX9LDEp4DyOfn9CqVT+7hpZvzPjfbGr937Rm
 JlwXhF3rQXEpOCagEsbt1vOf+V0e9QiCLf1Y2KpkIkDbE5wwSD/2qLm3tFhJG3oF
 fkW+J14Cid0pj+hY0afGe0kOUOIYlimu0nFmSf0pzMH+UktZdKogSfyb1gSDsy+S
 rsZRGPFhMJ832ExqhlDfxqBebqh+jsfKynlskui6Td5C9ZULaHA=
 =q751
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull iommu updates from Joerg Roedel:
 "Core changes:
   - Fix race conditions in device probe path
   - Retire IOMMU bus_ops
   - Support for passing custom allocators to page table drivers
   - Clean up Kconfig around IOMMU_SVA
   - Support for sharing SVA domains with all devices bound to a mm
   - Firmware data parsing cleanup
   - Tracing improvements for iommu-dma code
   - Some smaller fixes and cleanups

  ARM-SMMU drivers:
   - Device-tree binding updates:
      - Add additional compatible strings for Qualcomm SoCs
      - Document Adreno clocks for Qualcomm's SM8350 SoC
   - SMMUv2:
      - Implement support for the ->domain_alloc_paging() callback
      - Ensure Secure context is restored following suspend of Qualcomm
        SMMU implementation
   - SMMUv3:
      - Disable stalling mode for the "quiet" context descriptor
      - Minor refactoring and driver cleanups

  Intel VT-d driver:
   - Cleanup and refactoring

  AMD IOMMU driver:
   - Improve IO TLB invalidation logic
   - Small cleanups and improvements

  Rockchip IOMMU driver:
   - DT binding update to add Rockchip RK3588

  Apple DART driver:
   - Apple M1 USB4/Thunderbolt DART support
   - Cleanups

  Virtio IOMMU driver:
   - Add support for iotlb_sync_map
   - Enable deferred IO TLB flushes"

* tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (66 commits)
  iommu: Don't reserve 0-length IOVA region
  iommu/vt-d: Move inline helpers to header files
  iommu/vt-d: Remove unused vcmd interfaces
  iommu/vt-d: Remove unused parameter of intel_pasid_setup_pass_through()
  iommu/vt-d: Refactor device_to_iommu() to retrieve iommu directly
  iommu/sva: Fix memory leak in iommu_sva_bind_device()
  dt-bindings: iommu: rockchip: Add Rockchip RK3588
  iommu/dma: Trace bounce buffer usage when mapping buffers
  iommu/arm-smmu: Convert to domain_alloc_paging()
  iommu/arm-smmu: Pass arm_smmu_domain to internal functions
  iommu/arm-smmu: Implement IOMMU_DOMAIN_BLOCKED
  iommu/arm-smmu: Convert to a global static identity domain
  iommu/arm-smmu: Reorganize arm_smmu_domain_add_master()
  iommu/arm-smmu-v3: Remove ARM_SMMU_DOMAIN_NESTED
  iommu/arm-smmu-v3: Master cannot be NULL in arm_smmu_write_strtab_ent()
  iommu/arm-smmu-v3: Add a type for the STE
  iommu/arm-smmu-v3: disable stall for quiet_cd
  iommu/qcom: restore IOMMU state if needed
  iommu/arm-smmu-qcom: Add QCM2290 MDSS compatible
  iommu/arm-smmu-qcom: Add missing GMU entry to match table
  ...
2024-01-18 15:16:57 -08:00
Linus Torvalds
fb46e22a9e Many singleton patches against the MM code. The patch series which
are included in this merge do the following:
 
 - Peng Zhang has done some mapletree maintainance work in the
   series
 
 	"maple_tree: add mt_free_one() and mt_attr() helpers"
 	"Some cleanups of maple tree"
 
 - In the series "mm: use memmap_on_memory semantics for dax/kmem"
   Vishal Verma has altered the interworking between memory-hotplug
   and dax/kmem so that newly added 'device memory' can more easily
   have its memmap placed within that newly added memory.
 
 - Matthew Wilcox continues folio-related work (including a few
   fixes) in the patch series
 
 	"Add folio_zero_tail() and folio_fill_tail()"
 	"Make folio_start_writeback return void"
 	"Fix fault handler's handling of poisoned tail pages"
 	"Convert aops->error_remove_page to ->error_remove_folio"
 	"Finish two folio conversions"
 	"More swap folio conversions"
 
 - Kefeng Wang has also contributed folio-related work in the series
 
 	"mm: cleanup and use more folio in page fault"
 
 - Jim Cromie has improved the kmemleak reporting output in the
   series "tweak kmemleak report format".
 
 - In the series "stackdepot: allow evicting stack traces" Andrey
   Konovalov to permits clients (in this case KASAN) to cause
   eviction of no longer needed stack traces.
 
 - Charan Teja Kalla has fixed some accounting issues in the page
   allocator's atomic reserve calculations in the series "mm:
   page_alloc: fixes for high atomic reserve caluculations".
 
 - Dmitry Rokosov has added to the samples/ dorectory some sample
   code for a userspace memcg event listener application.  See the
   series "samples: introduce cgroup events listeners".
 
 - Some mapletree maintanance work from Liam Howlett in the series
   "maple_tree: iterator state changes".
 
 - Nhat Pham has improved zswap's approach to writeback in the
   series "workload-specific and memory pressure-driven zswap
   writeback".
 
 - DAMON/DAMOS feature and maintenance work from SeongJae Park in
   the series
 
 	"mm/damon: let users feed and tame/auto-tune DAMOS"
 	"selftests/damon: add Python-written DAMON functionality tests"
 	"mm/damon: misc updates for 6.8"
 
 - Yosry Ahmed has improved memcg's stats flushing in the series
   "mm: memcg: subtree stats flushing and thresholds".
 
 - In the series "Multi-size THP for anonymous memory" Ryan Roberts
   has added a runtime opt-in feature to transparent hugepages which
   improves performance by allocating larger chunks of memory during
   anonymous page faults.
 
 - Matthew Wilcox has also contributed some cleanup and maintenance
   work against eh buffer_head code int he series "More buffer_head
   cleanups".
 
 - Suren Baghdasaryan has done work on Andrea Arcangeli's series
   "userfaultfd move option".  UFFDIO_MOVE permits userspace heap
   compaction algorithms to move userspace's pages around rather than
   UFFDIO_COPY'a alloc/copy/free.
 
 - Stefan Roesch has developed a "KSM Advisor", in the series
   "mm/ksm: Add ksm advisor".  This is a governor which tunes KSM's
   scanning aggressiveness in response to userspace's current needs.
 
 - Chengming Zhou has optimized zswap's temporary working memory
   use in the series "mm/zswap: dstmem reuse optimizations and
   cleanups".
 
 - Matthew Wilcox has performed some maintenance work on the
   writeback code, both code and within filesystems.  The series is
   "Clean up the writeback paths".
 
 - Andrey Konovalov has optimized KASAN's handling of alloc and
   free stack traces for secondary-level allocators, in the series
   "kasan: save mempool stack traces".
 
 - Andrey also performed some KASAN maintenance work in the series
   "kasan: assorted clean-ups".
 
 - David Hildenbrand has gone to town on the rmap code.  Cleanups,
   more pte batching, folio conversions and more.  See the series
   "mm/rmap: interface overhaul".
 
 - Kinsey Ho has contributed some maintenance work on the MGLRU
   code in the series "mm/mglru: Kconfig cleanup".
 
 - Matthew Wilcox has contributed lruvec page accounting code
   cleanups in the series "Remove some lruvec page accounting
   functions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
 jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
 =0NHs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Peng Zhang has done some mapletree maintainance work in the series

	'maple_tree: add mt_free_one() and mt_attr() helpers'
	'Some cleanups of maple tree'

   - In the series 'mm: use memmap_on_memory semantics for dax/kmem'
     Vishal Verma has altered the interworking between memory-hotplug
     and dax/kmem so that newly added 'device memory' can more easily
     have its memmap placed within that newly added memory.

   - Matthew Wilcox continues folio-related work (including a few fixes)
     in the patch series

	'Add folio_zero_tail() and folio_fill_tail()'
	'Make folio_start_writeback return void'
	'Fix fault handler's handling of poisoned tail pages'
	'Convert aops->error_remove_page to ->error_remove_folio'
	'Finish two folio conversions'
	'More swap folio conversions'

   - Kefeng Wang has also contributed folio-related work in the series

	'mm: cleanup and use more folio in page fault'

   - Jim Cromie has improved the kmemleak reporting output in the series
     'tweak kmemleak report format'.

   - In the series 'stackdepot: allow evicting stack traces' Andrey
     Konovalov to permits clients (in this case KASAN) to cause eviction
     of no longer needed stack traces.

   - Charan Teja Kalla has fixed some accounting issues in the page
     allocator's atomic reserve calculations in the series 'mm:
     page_alloc: fixes for high atomic reserve caluculations'.

   - Dmitry Rokosov has added to the samples/ dorectory some sample code
     for a userspace memcg event listener application. See the series
     'samples: introduce cgroup events listeners'.

   - Some mapletree maintanance work from Liam Howlett in the series
     'maple_tree: iterator state changes'.

   - Nhat Pham has improved zswap's approach to writeback in the series
     'workload-specific and memory pressure-driven zswap writeback'.

   - DAMON/DAMOS feature and maintenance work from SeongJae Park in the
     series

	'mm/damon: let users feed and tame/auto-tune DAMOS'
	'selftests/damon: add Python-written DAMON functionality tests'
	'mm/damon: misc updates for 6.8'

   - Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
     memcg: subtree stats flushing and thresholds'.

   - In the series 'Multi-size THP for anonymous memory' Ryan Roberts
     has added a runtime opt-in feature to transparent hugepages which
     improves performance by allocating larger chunks of memory during
     anonymous page faults.

   - Matthew Wilcox has also contributed some cleanup and maintenance
     work against eh buffer_head code int he series 'More buffer_head
     cleanups'.

   - Suren Baghdasaryan has done work on Andrea Arcangeli's series
     'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
     compaction algorithms to move userspace's pages around rather than
     UFFDIO_COPY'a alloc/copy/free.

   - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
     Add ksm advisor'. This is a governor which tunes KSM's scanning
     aggressiveness in response to userspace's current needs.

   - Chengming Zhou has optimized zswap's temporary working memory use
     in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.

   - Matthew Wilcox has performed some maintenance work on the writeback
     code, both code and within filesystems. The series is 'Clean up the
     writeback paths'.

   - Andrey Konovalov has optimized KASAN's handling of alloc and free
     stack traces for secondary-level allocators, in the series 'kasan:
     save mempool stack traces'.

   - Andrey also performed some KASAN maintenance work in the series
     'kasan: assorted clean-ups'.

   - David Hildenbrand has gone to town on the rmap code. Cleanups, more
     pte batching, folio conversions and more. See the series 'mm/rmap:
     interface overhaul'.

   - Kinsey Ho has contributed some maintenance work on the MGLRU code
     in the series 'mm/mglru: Kconfig cleanup'.

   - Matthew Wilcox has contributed lruvec page accounting code cleanups
     in the series 'Remove some lruvec page accounting functions'"

* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
  mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
  mm, treewide: introduce NR_PAGE_ORDERS
  selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
  selftests/mm: skip test if application doesn't has root privileges
  selftests/mm: conform test to TAP format output
  selftests: mm: hugepage-mmap: conform to TAP format output
  selftests/mm: gup_test: conform test to TAP format output
  mm/selftests: hugepage-mremap: conform test to TAP format output
  mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
  mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
  mm/memcontrol: remove __mod_lruvec_page_state()
  mm/khugepaged: use a folio more in collapse_file()
  slub: use a folio in __kmalloc_large_node
  slub: use folio APIs in free_large_kmalloc()
  slub: use alloc_pages_node() in alloc_slab_page()
  mm: remove inc/dec lruvec page state functions
  mm: ratelimit stat flush from workingset shrinker
  kasan: stop leaking stack trace handles
  mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
  mm/mglru: add dummy pmd_dirty()
  ...
2024-01-09 11:18:47 -08:00
Linus Torvalds
d30e51aa7b slab updates for 6.8
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmWWu9EACgkQu+CwddJF
 iJpXvQf/aGL7uEY57VpTm0t4gPwoZ9r2P89HxI/nQs9XgVzDcBmVp/cC0LDvSdcm
 t91kJO538KeGjMgvlhLMTEuoShH5FlPs6cOwrGAYUoAGa4NwiOpGvliGky+nNHqY
 w887ZgSzVLq0UOuSvn86N6enumMvewt4V+872+OWo6O1HWOJhC0SgHTIa8QPQtwb
 yZ9BghO5IqMRXiZEsSIwyO+tQHcaU6l2G5huFXzgMFUhkQqAB9KTFc3h6rYI+i80
 L4ppNXo2KNPGTDRb9dA8LNMWgvmfjhCb7chs8o1zSY2PwZlkzOix7EUBLCAIbc/2
 EIaFC8AsZjfT47D1t72r8QpHB+C14Q==
 =J+E7
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - SLUB: delayed freezing of CPU partial slabs (Chengming Zhou)

   Freezing is an operation involving double_cmpxchg() that makes a slab
   exclusive for a particular CPU. Chengming noticed that we use it also
   in situations where we are not yet installing the slab as the CPU
   slab, because freezing also indicates that the slab is not on the
   shared list. This results in redundant freeze/unfreeze operation and
   can be avoided by marking separately the shared list presence by
   reusing the PG_workingset flag.

   This approach neatly avoids the issues described in 9b1ea29bc0d7
   ("Revert "mm, slub: consider rest of partial list if acquire_slab()
   fails"") as we can now grab a slab from the shared list in a quick
   and guaranteed way without the cmpxchg_double() operation that
   amplifies the lock contention and can fail.

   As a result, lkp has reported 34.2% improvement of
   stress-ng.rawudp.ops_per_sec

 - SLAB removal and SLUB cleanups (Vlastimil Babka)

   The SLAB allocator has been deprecated since 6.5 and nobody has
   objected so far. We agreed at LSF/MM to wait until the next LTS,
   which is 6.6, so we should be good to go now.

   This doesn't yet erase all traces of SLAB outside of mm/ so some dead
   code, comments or documentation remain, and will be cleaned up
   gradually (some series are already in the works).

   Removing the choice of allocators has already allowed to simplify and
   optimize the code wiring up the kmalloc APIs to the SLUB
   implementation.

* tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (34 commits)
  mm/slub: free KFENCE objects in slab_free_hook()
  mm/slub: handle bulk and single object freeing separately
  mm/slub: introduce __kmem_cache_free_bulk() without free hooks
  mm/slub: fix bulk alloc and free stats
  mm/slub: optimize free fast path code layout
  mm/slub: optimize alloc fastpath code layout
  mm/slub: remove slab_alloc() and __kmem_cache_alloc_lru() wrappers
  mm/slab: move kmalloc() functions from slab_common.c to slub.c
  mm/slab: move kmalloc_slab() to mm/slab.h
  mm/slab: move kfree() from slab_common.c to slub.c
  mm/slab: move struct kmem_cache_node from slab.h to slub.c
  mm/slab: move memcg related functions from slab.h to slub.c
  mm/slab: move pre/post-alloc hooks from slab.h to slub.c
  mm/slab: consolidate includes in the internal mm/slab.h
  mm/slab: move the rest of slub_def.h to mm/slab.h
  mm/slab: move struct kmem_cache_cpu declaration to slub.c
  mm/slab: remove mm/slab.c and slab_def.h
  mm/mempool/dmapool: remove CONFIG_DEBUG_SLAB ifdefs
  mm/slab: remove CONFIG_SLAB code from slab common code
  cpu/hotplug: remove CPUHP_SLAB_PREPARE hooks
  ...
2024-01-09 10:36:07 -08:00
Kirill A. Shutemov
5e0a760b44 mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive.  This has caused
issues with code that was not yet upstream and depended on the previous
definition.

To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.

Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08 15:27:15 -08:00
Kinsey Ho
61dd3f246b mm/mglru: add CONFIG_LRU_GEN_WALKS_MMU
Add CONFIG_LRU_GEN_WALKS_MMU such that if disabled, the code that
walks page tables to promote pages into the youngest generation will
not be built.

Also improves code readability by adding two helper functions
get_mm_state() and get_next_mm().

Link: https://lkml.kernel.org/r/20231227141205.2200125-3-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Tested-by: Donet Tom <donettom@linux.vnet.ibm.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-05 10:17:44 -08:00
Joerg Roedel
75f74f85a4 Merge branches 'apple/dart', 'arm/rockchip', 'arm/smmu', 'virtio', 'x86/vt-d', 'x86/amd' and 'core' into next 2024-01-03 09:59:32 +01:00
Kefeng Wang
e99fb98d47 mm: remove unnecessary ia64 code and comment
IA64 has gone with commit cf8e8658100d ("arch: Remove Itanium (IA-64)
architecture"), remove unnecessary ia64 special mm code and comment too.

Link: https://lkml.kernel.org/r/20231222070203.2966980-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:57 -08:00
Dmytro Maluka
683ec99f12 mm/thp: add CONFIG_TRANSPARENT_HUGEPAGE_NEVER option
Currently enabling THP support (CONFIG_TRANSPARENT_HUGEPAGE) requires
enabling either CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE, which both cause khugepaged starting
by default at kernel bootup.  Add the third choice
CONFIG_TRANSPARENT_HUGEPAGE_NEVER, in line with the existing kernel
command line setting transparent_hugepage=never, to disable THP by default
(in particular, to prevent starting khugepaged by default) but still allow
enabling it at runtime via sysfs.

Rationale: khugepaged has its own non-negligible memory cost even if it is
not used by any applications, since it bumps up vm.min_free_kbytes to its
own required minimum in set_recommended_min_free_kbytes().  For example,
on a machine with 4GB RAM, with 3 mm zones and pageblock_order ==
MAX_ORDER, starting khugepaged causes vm.min_free_kbytes increase from 8MB
to 132MB.

So if we use THP on machines with e.g.  >=8GB of memory for better
performance, but avoid using it on lower-memory machines to avoid its
memory overhead, then for the same reason we also want to avoid even
starting khugepaged on those <8GB machines.  So with
CONFIG_TRANSPARENT_HUGEPAGE_NEVER we can use the same kernel image on both
>=8GB and <8GB machines, with THP support enabled but khugepaged not
started by default.  The userspace can then decide to enable THP via sysfs
if needed, based on the total amount of memory.

This could also be achieved with the existing transparent_hugepage=never
setting in the kernel command line instead.  But it seems cleaner to avoid
tweaking the command line for such a basic setting.

P.S. I see that CONFIG_TRANSPARENT_HUGEPAGE_NEVER was already proposed
in the past [1] but without an explanation of the purpose.

[1] https://lore.kernel.org/all/202211301651462590168@zte.com.cn/

Link: https://lkml.kernel.org/r/20231205170244.2746210-1-dmaluka@chromium.org
Link: https://lore.kernel.org/all/20231204163254.2636289-1-dmaluka@chromium.org/
Signed-off-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12 10:57:07 -08:00
Nhat Pham
b5ba474f3f zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit.  This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory.  It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).

This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure.  The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.

Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:

* Estimate the number of warm pages residing in zswap, and attempt to
  protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
  saving factor. The better zswap compresses the data, the fewer pages
  we will evict to swap (as we will otherwise incur IO for relatively
  small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
  brought into memory, the shrinker will cautiously terminate its
  shrinking action, as this is a sign that it is touching the warmer
  region of the zswap LRU.

As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance.  Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.

[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
  Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12 10:57:02 -08:00
Jason Gunthorpe
8f23f5dba6 iommu: Change kconfig around IOMMU_SVA
Linus suggested that the kconfig here is confusing:

https://lore.kernel.org/all/CAHk-=wgUiAtiszwseM1p2fCJ+sC4XWQ+YN4TanFhUgvUqjr9Xw@mail.gmail.com/

Let's break it into three kconfigs controlling distinct things:

 - CONFIG_IOMMU_MM_DATA controls if the mm_struct has the additional
   fields for the IOMMU. Currently only PASID, but later patches store
   a struct iommu_mm_data *

 - CONFIG_ARCH_HAS_CPU_PASID controls if the arch needs the scheduling bit
   for keeping track of the ENQCMD instruction. x86 will select this if
   IOMMU_SVA is enabled

 - IOMMU_SVA controls if the IOMMU core compiles in the SVA support code
   for iommu driver use and the IOMMU exported API

This way ARM will not enable CONFIG_ARCH_HAS_CPU_PASID

Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20231027000525.1278806-2-tina.zhang@intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2023-12-12 10:11:27 +01:00
Peter Xu
97219cc358 mm/Kconfig: make userfaultfd a menuconfig
PTE_MARKER_UFFD_WP is a subconfig for userfaultfd.  To make it clear,
switch to use menuconfig for userfaultfd.

Link: https://lkml.kernel.org/r/20231123224204.1060152-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06 16:12:47 -08:00